{"title":"用扩展混合有限元法分析二阶双曲方程的双网格法","authors":"Keyan Wang","doi":"10.1515/math-2024-0048","DOIUrl":null,"url":null,"abstract":"In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0048_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the fine grid size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0048_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>h</m:mi> </m:math> <jats:tex-math>h</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfy <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0048_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>h</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\"script\">O</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⁄</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>h={\\mathcal{O}}\\left({H}^{\\left(2k+1)/\\left(k+1)})</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0048_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>k\\ge 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>), where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0048_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> <jats:tex-math>k</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of two-grid method for second-order hyperbolic equation by expanded mixed finite element methods\",\"authors\":\"Keyan Wang\",\"doi\":\"10.1515/math-2024-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0048_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the fine grid size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0048_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>h</m:mi> </m:math> <jats:tex-math>h</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfy <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0048_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>h</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\\\"script\\\">O</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⁄</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>h={\\\\mathcal{O}}\\\\left({H}^{\\\\left(2k+1)/\\\\left(k+1)})</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0048_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>k\\\\ge 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>), where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0048_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> </m:math> <jats:tex-math>k</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0048\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0048","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们提出了一种使用扩展混合有限元法求解二维双曲方程的方案。为了更高效地求解由此产生的非线性扩展混合有限元系统,我们提出了一种两步双网格算法。在粗网格和细网格上都证明了数值稳定性和误差估计。结果表明,只要粗网格尺寸 H H 和细网格尺寸 h h 满足 h = O ( H ( 2 k + 1 ) ⁄ ( k + 1 ) ) h={mathcal{O}}\left({H}^{\left(2k+1)/\left(k+1)}) ( k ≥ 1 k\ge 1 ) ,其中 k k 是主变量近似空间的度数,双网格法就能实现渐近最优近似。数值实验证明了所提方法的准确性和高效性。
Analysis of two-grid method for second-order hyperbolic equation by expanded mixed finite element methods
In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size HH and the fine grid size hh satisfy h=O(H(2k+1)⁄(k+1))h={\mathcal{O}}\left({H}^{\left(2k+1)/\left(k+1)}) (k≥1k\ge 1), where kk is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method.
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: