风险价值的自适应多级随机近似值

Stéphane Crépey, Noufel Frikha, Azar Louzi, Jonathan Spence
{"title":"风险价值的自适应多级随机近似值","authors":"Stéphane Crépey, Noufel Frikha, Azar Louzi, Jonathan Spence","doi":"arxiv-2408.06531","DOIUrl":null,"url":null,"abstract":"Cr\\'epey, Frikha, and Louzi (2023) introduced a multilevel stochastic\napproximation scheme to compute the value-at-risk of a financial loss that is\nonly simulatable by Monte Carlo. The optimal complexity of the scheme is in\n$O({\\varepsilon}^{-5/2})$, ${\\varepsilon} > 0$ being a prescribed accuracy,\nwhich is suboptimal when compared to the canonical multilevel Monte Carlo\nperformance. This suboptimality stems from the discontinuity of the Heaviside\nfunction involved in the biased stochastic gradient that is recursively\nevaluated to derive the value-at-risk. To mitigate this issue, this paper\nproposes and analyzes a multilevel stochastic approximation algorithm that\nadaptively selects the number of inner samples at each level, and proves that\nits optimal complexity is in $O({\\varepsilon}^{-2}|\\ln {\\varepsilon}|^{5/2})$.\nOur theoretical analysis is exemplified through numerical experiments.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Multilevel Stochastic Approximation of the Value-at-Risk\",\"authors\":\"Stéphane Crépey, Noufel Frikha, Azar Louzi, Jonathan Spence\",\"doi\":\"arxiv-2408.06531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cr\\\\'epey, Frikha, and Louzi (2023) introduced a multilevel stochastic\\napproximation scheme to compute the value-at-risk of a financial loss that is\\nonly simulatable by Monte Carlo. The optimal complexity of the scheme is in\\n$O({\\\\varepsilon}^{-5/2})$, ${\\\\varepsilon} > 0$ being a prescribed accuracy,\\nwhich is suboptimal when compared to the canonical multilevel Monte Carlo\\nperformance. This suboptimality stems from the discontinuity of the Heaviside\\nfunction involved in the biased stochastic gradient that is recursively\\nevaluated to derive the value-at-risk. To mitigate this issue, this paper\\nproposes and analyzes a multilevel stochastic approximation algorithm that\\nadaptively selects the number of inner samples at each level, and proves that\\nits optimal complexity is in $O({\\\\varepsilon}^{-2}|\\\\ln {\\\\varepsilon}|^{5/2})$.\\nOur theoretical analysis is exemplified through numerical experiments.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Cr\'epey、Frikha 和 Louzi(2023 年)提出了一种多层次随机逼近方案,用于计算只能通过蒙特卡罗模拟的金融损失的风险值。该方案的最优复杂度为$O({\varepsilon}^{-5/2})$,${\varepsilon}^{-5/2}为规定精度。>0$是一个规定精度,与典型的多级蒙特卡洛运算相比,它是次优的。这种次优性源于有偏随机梯度中涉及的 Heaviside 函数的不连续性,该梯度被递归评估以得出风险值。为了缓解这一问题,本文提出并分析了一种多层次随机逼近算法,该算法可以自适应地选择每个层次的内样本数量,并证明其最优复杂度为 $O({\varepsilon}^{-2}|\ln {\varepsilon}|^{5/2})$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Multilevel Stochastic Approximation of the Value-at-Risk
Cr\'epey, Frikha, and Louzi (2023) introduced a multilevel stochastic approximation scheme to compute the value-at-risk of a financial loss that is only simulatable by Monte Carlo. The optimal complexity of the scheme is in $O({\varepsilon}^{-5/2})$, ${\varepsilon} > 0$ being a prescribed accuracy, which is suboptimal when compared to the canonical multilevel Monte Carlo performance. This suboptimality stems from the discontinuity of the Heaviside function involved in the biased stochastic gradient that is recursively evaluated to derive the value-at-risk. To mitigate this issue, this paper proposes and analyzes a multilevel stochastic approximation algorithm that adaptively selects the number of inner samples at each level, and proves that its optimal complexity is in $O({\varepsilon}^{-2}|\ln {\varepsilon}|^{5/2})$. Our theoretical analysis is exemplified through numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信