利用 Lambda 风险价值进行最佳保险设计

Tim J. Boonen, Yuyu Chen, Xia Han, Qiuqi Wang
{"title":"利用 Lambda 风险价值进行最佳保险设计","authors":"Tim J. Boonen, Yuyu Chen, Xia Han, Qiuqi Wang","doi":"arxiv-2408.09799","DOIUrl":null,"url":null,"abstract":"This paper explores optimal insurance solutions based on the\nLambda-Value-at-Risk ($\\Lambda\\VaR$). If the expected value premium principle\nis used, our findings confirm that, similar to the VaR model, a truncated\nstop-loss indemnity is optimal in the $\\Lambda\\VaR$ model. We further provide a\nclosed-form expression of the deductible parameter under certain conditions.\nMoreover, we study the use of a $\\Lambda'\\VaR$ as premium principle as well,\nand show that full or no insurance is optimal. Dual stop-loss is shown to be\noptimal if we use a $\\Lambda'\\VaR$ only to determine the risk-loading in the\npremium principle. Moreover, we study the impact of model uncertainty,\nconsidering situations where the loss distribution is unknown but falls within\na defined uncertainty set. Our findings indicate that a truncated stop-loss\nindemnity is optimal when the uncertainty set is based on a likelihood ratio.\nHowever, when uncertainty arises from the first two moments of the loss\nvariable, we provide the closed-form optimal deductible in a stop-loss\nindemnity.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal insurance design with Lambda-Value-at-Risk\",\"authors\":\"Tim J. Boonen, Yuyu Chen, Xia Han, Qiuqi Wang\",\"doi\":\"arxiv-2408.09799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores optimal insurance solutions based on the\\nLambda-Value-at-Risk ($\\\\Lambda\\\\VaR$). If the expected value premium principle\\nis used, our findings confirm that, similar to the VaR model, a truncated\\nstop-loss indemnity is optimal in the $\\\\Lambda\\\\VaR$ model. We further provide a\\nclosed-form expression of the deductible parameter under certain conditions.\\nMoreover, we study the use of a $\\\\Lambda'\\\\VaR$ as premium principle as well,\\nand show that full or no insurance is optimal. Dual stop-loss is shown to be\\noptimal if we use a $\\\\Lambda'\\\\VaR$ only to determine the risk-loading in the\\npremium principle. Moreover, we study the impact of model uncertainty,\\nconsidering situations where the loss distribution is unknown but falls within\\na defined uncertainty set. Our findings indicate that a truncated stop-loss\\nindemnity is optimal when the uncertainty set is based on a likelihood ratio.\\nHowever, when uncertainty arises from the first two moments of the loss\\nvariable, we provide the closed-form optimal deductible in a stop-loss\\nindemnity.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了基于兰姆达风险价值($\Lambda\VaR$)的最优保险方案。如果使用期望值溢价原则,我们的研究结果证实,与 VaR 模型类似,截断止损赔偿在 $\Lambda\VaR$ 模型中是最优的。此外,我们还研究了使用$\Lambda'\VaR$作为保费原则的情况,结果表明全额保险或无保险都是最优的。如果我们只用$\Lambda'\VaR$来决定保费原则中的风险负荷,那么双止损被证明是最优的。此外,我们还研究了模型不确定性的影响,考虑了损失分布未知但属于确定的不确定性集的情况。我们的研究结果表明,当不确定性集以似然比为基础时,截断的止损赔偿是最优的。然而,当不确定性来自损失变量的前两个时刻时,我们提供了止损赔偿中封闭形式的最优免赔额。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal insurance design with Lambda-Value-at-Risk
This paper explores optimal insurance solutions based on the Lambda-Value-at-Risk ($\Lambda\VaR$). If the expected value premium principle is used, our findings confirm that, similar to the VaR model, a truncated stop-loss indemnity is optimal in the $\Lambda\VaR$ model. We further provide a closed-form expression of the deductible parameter under certain conditions. Moreover, we study the use of a $\Lambda'\VaR$ as premium principle as well, and show that full or no insurance is optimal. Dual stop-loss is shown to be optimal if we use a $\Lambda'\VaR$ only to determine the risk-loading in the premium principle. Moreover, we study the impact of model uncertainty, considering situations where the loss distribution is unknown but falls within a defined uncertainty set. Our findings indicate that a truncated stop-loss indemnity is optimal when the uncertainty set is based on a likelihood ratio. However, when uncertainty arises from the first two moments of the loss variable, we provide the closed-form optimal deductible in a stop-loss indemnity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信