{"title":"利用第一个 CHIME/FRB 目录约束非重复 FRB 的地球质量原始黑洞合并模型","authors":"Min Meng, Qiu-Ju Huang, Can-Min Deng","doi":"10.1088/1674-4527/ad6fe7","DOIUrl":null,"url":null,"abstract":"In this paper, we upgrade the constraints for the Earth-mass primordial black hole mergers model based on the first Canadian Hydrogen Intensity Mapping Experiment (CHIME)/fast radio burst (FRB) catalog. Assuming the null hypothesis that the observed non-repeating FRBs originate from Earth-mass primordial black hole mergers, we find that how the charges were distributed in the primordial black hole population is well described by a double power-law function with typical charge value of <inline-formula>\n<tex-math>\n<?CDATA ${q}_{{\\rm{c}}}/{10}^{-5}={1.60}_{-0.28}^{+0.28}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>q</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">c</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo stretchy=\"true\">/</mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msubsup><mml:mrow><mml:mn>1.60</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.28</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.28</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"raaad6fe7ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, where the power-law index <inline-formula>\n<tex-math>\n<?CDATA ${\\alpha }_{1}={2.33}_{-0.18}^{+0.15}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>α</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:msubsup><mml:mrow><mml:mn>2.33</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.18</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"raaad6fe7ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> for <italic toggle=\"yes\">q</italic> < <italic toggle=\"yes\">q</italic>\n<sub>c</sub> and <inline-formula>\n<tex-math>\n<?CDATA ${\\alpha }_{2}={4.56}_{-0.26}^{+0.30}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>α</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:msubsup><mml:mrow><mml:mn>4.56</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.26</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.30</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"raaad6fe7ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> for <italic toggle=\"yes\">q</italic> ≥ <italic toggle=\"yes\">q</italic>\n<sub>c</sub>. Here, <italic toggle=\"yes\">q</italic> represents the charge of the black hole in units of <inline-formula>\n<tex-math>\n<?CDATA $\\sqrt{G}M$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msqrt><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msqrt><mml:mi>M</mml:mi></mml:math>\n<inline-graphic xlink:href=\"raaad6fe7ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, where <italic toggle=\"yes\">M</italic> is the mass of the black hole. Furthermore, we infer the local event rate of the bursts is <inline-formula>\n<tex-math>\n<?CDATA ${8.8}_{-2.1}^{+5.7}\\times {10}^{4}\\,{\\mathrm{Gpc}}^{-3}\\,{\\mathrm{yr}}^{-1}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>8.8</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2.1</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>5.7</mml:mn></mml:mrow></mml:msubsup><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mspace width=\"0.25em\"></mml:mspace><mml:msup><mml:mrow><mml:mi>Gpc</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:mspace width=\"0.25em\"></mml:mspace><mml:msup><mml:mrow><mml:mi>yr</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"raaad6fe7ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, which indicates that an abundance of the primordial black hole population <italic toggle=\"yes\">f</italic> ≳ 10<sup>−4</sup> is needed to account for the observed FRBs by CHIME. The results of this paper lay the basis for further research on the electromagnetic radiation background generated by the merger of primordial black hole mergers.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"2021 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraining the Earth-mass Primordial Black Hole Mergers Model of the Non-repeating FRBs Using the First CHIME/FRB Catalog\",\"authors\":\"Min Meng, Qiu-Ju Huang, Can-Min Deng\",\"doi\":\"10.1088/1674-4527/ad6fe7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we upgrade the constraints for the Earth-mass primordial black hole mergers model based on the first Canadian Hydrogen Intensity Mapping Experiment (CHIME)/fast radio burst (FRB) catalog. Assuming the null hypothesis that the observed non-repeating FRBs originate from Earth-mass primordial black hole mergers, we find that how the charges were distributed in the primordial black hole population is well described by a double power-law function with typical charge value of <inline-formula>\\n<tex-math>\\n<?CDATA ${q}_{{\\\\rm{c}}}/{10}^{-5}={1.60}_{-0.28}^{+0.28}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi>q</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"normal\\\">c</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo stretchy=\\\"true\\\">/</mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msubsup><mml:mrow><mml:mn>1.60</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.28</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.28</mml:mn></mml:mrow></mml:msubsup></mml:math>\\n<inline-graphic xlink:href=\\\"raaad6fe7ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, where the power-law index <inline-formula>\\n<tex-math>\\n<?CDATA ${\\\\alpha }_{1}={2.33}_{-0.18}^{+0.15}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi>α</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:msubsup><mml:mrow><mml:mn>2.33</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.18</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:msubsup></mml:math>\\n<inline-graphic xlink:href=\\\"raaad6fe7ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> for <italic toggle=\\\"yes\\\">q</italic> < <italic toggle=\\\"yes\\\">q</italic>\\n<sub>c</sub> and <inline-formula>\\n<tex-math>\\n<?CDATA ${\\\\alpha }_{2}={4.56}_{-0.26}^{+0.30}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi>α</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:msubsup><mml:mrow><mml:mn>4.56</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.26</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.30</mml:mn></mml:mrow></mml:msubsup></mml:math>\\n<inline-graphic xlink:href=\\\"raaad6fe7ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> for <italic toggle=\\\"yes\\\">q</italic> ≥ <italic toggle=\\\"yes\\\">q</italic>\\n<sub>c</sub>. Here, <italic toggle=\\\"yes\\\">q</italic> represents the charge of the black hole in units of <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\sqrt{G}M$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msqrt><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msqrt><mml:mi>M</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"raaad6fe7ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, where <italic toggle=\\\"yes\\\">M</italic> is the mass of the black hole. Furthermore, we infer the local event rate of the bursts is <inline-formula>\\n<tex-math>\\n<?CDATA ${8.8}_{-2.1}^{+5.7}\\\\times {10}^{4}\\\\,{\\\\mathrm{Gpc}}^{-3}\\\\,{\\\\mathrm{yr}}^{-1}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msubsup><mml:mrow><mml:mn>8.8</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2.1</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>5.7</mml:mn></mml:mrow></mml:msubsup><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:msup><mml:mrow><mml:mi>Gpc</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:msup><mml:mrow><mml:mi>yr</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"raaad6fe7ieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, which indicates that an abundance of the primordial black hole population <italic toggle=\\\"yes\\\">f</italic> ≳ 10<sup>−4</sup> is needed to account for the observed FRBs by CHIME. The results of this paper lay the basis for further research on the electromagnetic radiation background generated by the merger of primordial black hole mergers.\",\"PeriodicalId\":54494,\"journal\":{\"name\":\"Research in Astronomy and Astrophysics\",\"volume\":\"2021 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Astronomy and Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4527/ad6fe7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad6fe7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们基于第一份加拿大氢强度绘图实验(CHIME)/快速射电暴(FRB)目录,升级了对地球质量原始黑洞合并模型的约束。假设零假设是观测到的非重复FRB源自地球质量的原始黑洞合并,我们发现原始黑洞群中电荷的分布可以用双幂律函数很好地描述,典型电荷值为qc/10-5=1.60-0.28+0.28,其中q < qc时幂律指数α1=2.33-0.18+0.15,q≥qc时α2=4.56-0.26+0.30。这里,q 代表黑洞的电荷,单位是 GM,其中 M 是黑洞的质量。此外,我们推断爆发的本地事件率为8.8-2.1+5.7×104Gpc-3yr-1,这表明要解释CHIME观测到的FRB,需要原始黑洞种群的丰度f ≳ 10-4。本文的研究结果为进一步研究原始黑洞合并产生的电磁辐射背景奠定了基础。
Constraining the Earth-mass Primordial Black Hole Mergers Model of the Non-repeating FRBs Using the First CHIME/FRB Catalog
In this paper, we upgrade the constraints for the Earth-mass primordial black hole mergers model based on the first Canadian Hydrogen Intensity Mapping Experiment (CHIME)/fast radio burst (FRB) catalog. Assuming the null hypothesis that the observed non-repeating FRBs originate from Earth-mass primordial black hole mergers, we find that how the charges were distributed in the primordial black hole population is well described by a double power-law function with typical charge value of qc/10−5=1.60−0.28+0.28, where the power-law index α1=2.33−0.18+0.15 for q < qc and α2=4.56−0.26+0.30 for q ≥ qc. Here, q represents the charge of the black hole in units of GM, where M is the mass of the black hole. Furthermore, we infer the local event rate of the bursts is 8.8−2.1+5.7×104Gpc−3yr−1, which indicates that an abundance of the primordial black hole population f ≳ 10−4 is needed to account for the observed FRBs by CHIME. The results of this paper lay the basis for further research on the electromagnetic radiation background generated by the merger of primordial black hole mergers.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods