利用增量批量学习评估信用 VIX (CDS IV) 预测方法

Robert Taylor
{"title":"利用增量批量学习评估信用 VIX (CDS IV) 预测方法","authors":"Robert Taylor","doi":"arxiv-2408.15404","DOIUrl":null,"url":null,"abstract":"This paper presents the experimental process and results of SVM, Gradient\nBoosting, and an Attention-GRU Hybrid model in predicting the Implied\nVolatility of rolled-over five-year spread contracts of credit default swaps\n(CDS) on European corporate debt during the quarter following mid-May '24, as\nrepresented by the iTraxx/Cboe Europe Main 1-Month Volatility Index (BP\nVolatility). The analysis employs a feature matrix inspired by Merton's\ndeterminants of default probability. Our comparative assessment aims to\nidentify strengths in SOTA and classical machine learning methods for financial\nrisk prediction","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Credit VIX (CDS IV) Prediction Methods with Incremental Batch Learning\",\"authors\":\"Robert Taylor\",\"doi\":\"arxiv-2408.15404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the experimental process and results of SVM, Gradient\\nBoosting, and an Attention-GRU Hybrid model in predicting the Implied\\nVolatility of rolled-over five-year spread contracts of credit default swaps\\n(CDS) on European corporate debt during the quarter following mid-May '24, as\\nrepresented by the iTraxx/Cboe Europe Main 1-Month Volatility Index (BP\\nVolatility). The analysis employs a feature matrix inspired by Merton's\\ndeterminants of default probability. Our comparative assessment aims to\\nidentify strengths in SOTA and classical machine learning methods for financial\\nrisk prediction\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 SVM、GradientBoosting 和 Attention-GRU 混合模型在预测 24 年 5 月中旬后一个季度欧洲公司债信用违约掉期(CDS)五年期展期合约隐含波动率(以 iTraxx/Cboe Europe Main 1-Month Volatility Index (BPVolatility) 为代表)方面的实验过程和结果。分析采用了受默顿违约概率决定因素启发的特征矩阵。我们的比较评估旨在找出 SOTA 和经典机器学习方法在金融风险预测方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Credit VIX (CDS IV) Prediction Methods with Incremental Batch Learning
This paper presents the experimental process and results of SVM, Gradient Boosting, and an Attention-GRU Hybrid model in predicting the Implied Volatility of rolled-over five-year spread contracts of credit default swaps (CDS) on European corporate debt during the quarter following mid-May '24, as represented by the iTraxx/Cboe Europe Main 1-Month Volatility Index (BP Volatility). The analysis employs a feature matrix inspired by Merton's determinants of default probability. Our comparative assessment aims to identify strengths in SOTA and classical machine learning methods for financial risk prediction
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信