评估风险规避随机程序的解决方案质量

E. Ruben van Beesten, Nick W. Koning, David P. Morton
{"title":"评估风险规避随机程序的解决方案质量","authors":"E. Ruben van Beesten, Nick W. Koning, David P. Morton","doi":"arxiv-2408.15690","DOIUrl":null,"url":null,"abstract":"In an optimization problem, the quality of a candidate solution can be\ncharacterized by the optimality gap. For most stochastic optimization problems,\nthis gap must be statistically estimated. We show that standard estimators are\noptimistically biased for risk-averse problems, which compromises the\nstatistical guarantee on the optimality gap. We introduce estimators for\nrisk-averse problems that do not suffer from this bias. Our method relies on\nusing two independent samples, each estimating a different component of the\noptimality gap. Our approach extends a broad class of methods for estimating\nthe optimality gap from the risk-neutral case to the risk-averse case, such as\nthe multiple replications procedure and its one- and two-sample variants. Our\napproach can further make use of existing bias and variance reduction\ntechniques.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing solution quality in risk-averse stochastic programs\",\"authors\":\"E. Ruben van Beesten, Nick W. Koning, David P. Morton\",\"doi\":\"arxiv-2408.15690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an optimization problem, the quality of a candidate solution can be\\ncharacterized by the optimality gap. For most stochastic optimization problems,\\nthis gap must be statistically estimated. We show that standard estimators are\\noptimistically biased for risk-averse problems, which compromises the\\nstatistical guarantee on the optimality gap. We introduce estimators for\\nrisk-averse problems that do not suffer from this bias. Our method relies on\\nusing two independent samples, each estimating a different component of the\\noptimality gap. Our approach extends a broad class of methods for estimating\\nthe optimality gap from the risk-neutral case to the risk-averse case, such as\\nthe multiple replications procedure and its one- and two-sample variants. Our\\napproach can further make use of existing bias and variance reduction\\ntechniques.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在优化问题中,候选解的质量可以用最优性差距来描述。对于大多数随机优化问题,必须对这一差距进行统计估计。我们的研究表明,对于风险规避问题,标准估算器存在乐观偏差,从而影响了对最优性差距的统计保证。我们为风险规避问题引入了不存在这种偏差的估计方法。我们的方法依赖于使用两个独立样本,每个样本估计最优性差距的不同部分。我们的方法将一大类估计最优性差距的方法从风险中性情况扩展到了风险规避情况,如多重重复程序及其单样本和双样本变体。我们的方法可以进一步利用现有的减少偏差和方差的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing solution quality in risk-averse stochastic programs
In an optimization problem, the quality of a candidate solution can be characterized by the optimality gap. For most stochastic optimization problems, this gap must be statistically estimated. We show that standard estimators are optimistically biased for risk-averse problems, which compromises the statistical guarantee on the optimality gap. We introduce estimators for risk-averse problems that do not suffer from this bias. Our method relies on using two independent samples, each estimating a different component of the optimality gap. Our approach extends a broad class of methods for estimating the optimality gap from the risk-neutral case to the risk-averse case, such as the multiple replications procedure and its one- and two-sample variants. Our approach can further make use of existing bias and variance reduction techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信