{"title":"量化频谱风险度量的风险规避程度","authors":"E. Ruben van Beesten","doi":"arxiv-2408.15675","DOIUrl":null,"url":null,"abstract":"I propose a functional on the space of spectral risk measures that quantifies\ntheir ``degree of risk aversion''. This quantification formalizes the idea that\nsome risk measures are ``more risk-averse'' than others. I construct the\nfunctional using two axioms: a normalization on the space of CVaRs and a\nlinearity axiom. I present two formulas for the functional and discuss several\nproperties and interpretations.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the degree of risk aversion of spectral risk measures\",\"authors\":\"E. Ruben van Beesten\",\"doi\":\"arxiv-2408.15675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I propose a functional on the space of spectral risk measures that quantifies\\ntheir ``degree of risk aversion''. This quantification formalizes the idea that\\nsome risk measures are ``more risk-averse'' than others. I construct the\\nfunctional using two axioms: a normalization on the space of CVaRs and a\\nlinearity axiom. I present two formulas for the functional and discuss several\\nproperties and interpretations.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantifying the degree of risk aversion of spectral risk measures
I propose a functional on the space of spectral risk measures that quantifies
their ``degree of risk aversion''. This quantification formalizes the idea that
some risk measures are ``more risk-averse'' than others. I construct the
functional using two axioms: a normalization on the space of CVaRs and a
linearity axiom. I present two formulas for the functional and discuss several
properties and interpretations.