量化频谱风险度量的风险规避程度

E. Ruben van Beesten
{"title":"量化频谱风险度量的风险规避程度","authors":"E. Ruben van Beesten","doi":"arxiv-2408.15675","DOIUrl":null,"url":null,"abstract":"I propose a functional on the space of spectral risk measures that quantifies\ntheir ``degree of risk aversion''. This quantification formalizes the idea that\nsome risk measures are ``more risk-averse'' than others. I construct the\nfunctional using two axioms: a normalization on the space of CVaRs and a\nlinearity axiom. I present two formulas for the functional and discuss several\nproperties and interpretations.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the degree of risk aversion of spectral risk measures\",\"authors\":\"E. Ruben van Beesten\",\"doi\":\"arxiv-2408.15675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I propose a functional on the space of spectral risk measures that quantifies\\ntheir ``degree of risk aversion''. This quantification formalizes the idea that\\nsome risk measures are ``more risk-averse'' than others. I construct the\\nfunctional using two axioms: a normalization on the space of CVaRs and a\\nlinearity axiom. I present two formulas for the functional and discuss several\\nproperties and interpretations.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我提出了一个关于频谱风险度量空间的函数,可以量化它们的 "风险规避程度"。这种量化形式化了一些风险度量比其他风险度量 "更能规避风险 "的观点。我利用两个公理构建了函数:CVaR 空间上的归一化和线性公理。我提出了该函数的两个公式,并讨论了几个性质和解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying the degree of risk aversion of spectral risk measures
I propose a functional on the space of spectral risk measures that quantifies their ``degree of risk aversion''. This quantification formalizes the idea that some risk measures are ``more risk-averse'' than others. I construct the functional using two axioms: a normalization on the space of CVaRs and a linearity axiom. I present two formulas for the functional and discuss several properties and interpretations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信