分数随机正则模型的市场信息

Daniele Angelini, Matthieu Garcin
{"title":"分数随机正则模型的市场信息","authors":"Daniele Angelini, Matthieu Garcin","doi":"arxiv-2409.07159","DOIUrl":null,"url":null,"abstract":"The Fractional Stochastic Regularity Model (FSRM) is an extension of\nBlack-Scholes model describing the multifractal nature of prices. It is based\non a multifractional process with a random Hurst exponent $H_t$, driven by a\nfractional Ornstein-Uhlenbeck (fOU) process. When the regularity parameter\n$H_t$ is equal to $1/2$, the efficient market hypothesis holds, but when\n$H_t\\neq 1/2$ past price returns contain some information on a future trend or\nmean-reversion of the log-price process. In this paper, we investigate some\nproperties of the fOU process and, thanks to information theory and Shannon's\nentropy, we determine theoretically the serial information of the regularity\nprocess $H_t$ of the FSRM, giving some insight into one's ability to forecast\nfuture price increments and to build statistical arbitrages with this model.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Market information of the fractional stochastic regularity model\",\"authors\":\"Daniele Angelini, Matthieu Garcin\",\"doi\":\"arxiv-2409.07159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fractional Stochastic Regularity Model (FSRM) is an extension of\\nBlack-Scholes model describing the multifractal nature of prices. It is based\\non a multifractional process with a random Hurst exponent $H_t$, driven by a\\nfractional Ornstein-Uhlenbeck (fOU) process. When the regularity parameter\\n$H_t$ is equal to $1/2$, the efficient market hypothesis holds, but when\\n$H_t\\\\neq 1/2$ past price returns contain some information on a future trend or\\nmean-reversion of the log-price process. In this paper, we investigate some\\nproperties of the fOU process and, thanks to information theory and Shannon's\\nentropy, we determine theoretically the serial information of the regularity\\nprocess $H_t$ of the FSRM, giving some insight into one's ability to forecast\\nfuture price increments and to build statistical arbitrages with this model.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分数随机正则模型(FSRM)是布莱克-斯科尔斯(Black-Scholes)模型的扩展,描述了价格的多分性。它基于一个具有随机赫斯特指数 $H_t$ 的多分形过程,由分形奥恩斯坦-乌伦贝克(fOU)过程驱动。当规律性参数$H_t$等于1/2$时,有效市场假说成立,但当$H_t/neq为1/2$时,过去的价格回报包含了对数价格过程未来趋势或均值反转的一些信息。在本文中,我们研究了 fOU 过程的一些特性,并借助信息论和香农熵,从理论上确定了 FSRM 的正则过程 $H_t$ 的序列信息,从而对预测未来价格增量和利用该模型建立统计套利的能力有了一定的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Market information of the fractional stochastic regularity model
The Fractional Stochastic Regularity Model (FSRM) is an extension of Black-Scholes model describing the multifractal nature of prices. It is based on a multifractional process with a random Hurst exponent $H_t$, driven by a fractional Ornstein-Uhlenbeck (fOU) process. When the regularity parameter $H_t$ is equal to $1/2$, the efficient market hypothesis holds, but when $H_t\neq 1/2$ past price returns contain some information on a future trend or mean-reversion of the log-price process. In this paper, we investigate some properties of the fOU process and, thanks to information theory and Shannon's entropy, we determine theoretically the serial information of the regularity process $H_t$ of the FSRM, giving some insight into one's ability to forecast future price increments and to build statistical arbitrages with this model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信