非线性空腔电磁系统中的非互惠非常规磁子封锁

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Yujie Fang, Wenxue Zhong, Guangling Cheng, Aixi Chen
{"title":"非线性空腔电磁系统中的非互惠非常规磁子封锁","authors":"Yujie Fang, Wenxue Zhong, Guangling Cheng, Aixi Chen","doi":"10.1007/s11128-024-04517-4","DOIUrl":null,"url":null,"abstract":"<p>We propose an effective scheme to predict nonreciprocal unconventional magnon blockade in a hybrid system composed of a rotating pump cavity, a signal cavity and a yttrium iron-garnet (YIG) sphere. The two cavities interact nonlinearly, and meanwhile, the signal cavity couples to magnon in the YIG sphere via magnetic dipole interaction. Based on the dispersive couplings between two cavities and between the signal cavity and magnon, the indirect nonlinear interaction is established between the pump cavity and magnon modes, which plays an important role in the generation of magnon blockade. The system exhibits nonreciprocal unconventional magnon blockade phenomenon when the pump cavity is driven from clockwise or counterclockwise directions. These phenomena occur in weak coupling and driving regimes, which could relax the requirements of the system parameters and may have potential applications in quantum information processing in hybrid systems.</p>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonreciprocal unconventional magnon blockade in nonlinear cavity electromagnonical system\",\"authors\":\"Yujie Fang, Wenxue Zhong, Guangling Cheng, Aixi Chen\",\"doi\":\"10.1007/s11128-024-04517-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose an effective scheme to predict nonreciprocal unconventional magnon blockade in a hybrid system composed of a rotating pump cavity, a signal cavity and a yttrium iron-garnet (YIG) sphere. The two cavities interact nonlinearly, and meanwhile, the signal cavity couples to magnon in the YIG sphere via magnetic dipole interaction. Based on the dispersive couplings between two cavities and between the signal cavity and magnon, the indirect nonlinear interaction is established between the pump cavity and magnon modes, which plays an important role in the generation of magnon blockade. The system exhibits nonreciprocal unconventional magnon blockade phenomenon when the pump cavity is driven from clockwise or counterclockwise directions. These phenomena occur in weak coupling and driving regimes, which could relax the requirements of the system parameters and may have potential applications in quantum information processing in hybrid systems.</p>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11128-024-04517-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11128-024-04517-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种有效的方案,用于预测由旋转泵腔、信号腔和钇铁石榴石(YIG)球组成的混合系统中的非互惠非常规磁子封锁。两个腔体发生非线性相互作用,同时,信号腔通过磁偶极子相互作用与 YIG 球中的磁子耦合。基于两个腔体之间以及信号腔体与磁子之间的色散耦合,泵浦腔体与磁子模式之间建立了间接非线性相互作用,这在磁子阻塞的产生中发挥了重要作用。当泵腔从顺时针或逆时针方向被驱动时,系统表现出非互惠的非常规磁子阻塞现象。这些现象发生在弱耦合和驱动状态下,可以放宽对系统参数的要求,并有可能应用于混合系统中的量子信息处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonreciprocal unconventional magnon blockade in nonlinear cavity electromagnonical system

Nonreciprocal unconventional magnon blockade in nonlinear cavity electromagnonical system

We propose an effective scheme to predict nonreciprocal unconventional magnon blockade in a hybrid system composed of a rotating pump cavity, a signal cavity and a yttrium iron-garnet (YIG) sphere. The two cavities interact nonlinearly, and meanwhile, the signal cavity couples to magnon in the YIG sphere via magnetic dipole interaction. Based on the dispersive couplings between two cavities and between the signal cavity and magnon, the indirect nonlinear interaction is established between the pump cavity and magnon modes, which plays an important role in the generation of magnon blockade. The system exhibits nonreciprocal unconventional magnon blockade phenomenon when the pump cavity is driven from clockwise or counterclockwise directions. These phenomena occur in weak coupling and driving regimes, which could relax the requirements of the system parameters and may have potential applications in quantum information processing in hybrid systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信