考虑轮载位置的 OSD 箱梁桥肋对桥面焊缝根部有效缺口应力研究

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Mark Joel Bañares Uaje, Jun Murakoshi
{"title":"考虑轮载位置的 OSD 箱梁桥肋对桥面焊缝根部有效缺口应力研究","authors":"Mark Joel Bañares Uaje, Jun Murakoshi","doi":"10.1007/s13296-024-00889-6","DOIUrl":null,"url":null,"abstract":"<p>Fatigue cracks have been reported in orthotropic steel deck bridges under severe traffic conditions in Japan, particularly root-deck and bead cracks, which initiate from the root of the rib-to-deck weld. The local stress directly influencing crack initiation was investigated using a finite element model based on a section of an actual bridge with a high incidence of cracks. The analysis focused on the weld root at the floor beam intersection and the span center of the bridge section. The model was subjected to loading in the transverse and longitudinal direction of the bridge combined with various wheel load configurations. The effect on the local stress properties was analyzed using the effective notch stress approach. A load position slightly off-center of the U-rib resulted in peak stress at the study locations. Its principal stress direction angle around the notch suggests a root-deck type of crack initiation. Testing several pavement stiffnesses revealed that using an SFRC pavement resulted in a 76%–84% reduction of peak effective notch stress compared to asphalt pavement. Furthermore, varying weld configurations demonstrated that lowering the weld penetration rate could alter the local stress position, influencing the crack initiation direction.</p>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":"55 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Effective Notch Stress at the Root of the Rib-to-Deck Weld in an OSD Box Girder Bridge Considering the Wheel Load Position\",\"authors\":\"Mark Joel Bañares Uaje, Jun Murakoshi\",\"doi\":\"10.1007/s13296-024-00889-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fatigue cracks have been reported in orthotropic steel deck bridges under severe traffic conditions in Japan, particularly root-deck and bead cracks, which initiate from the root of the rib-to-deck weld. The local stress directly influencing crack initiation was investigated using a finite element model based on a section of an actual bridge with a high incidence of cracks. The analysis focused on the weld root at the floor beam intersection and the span center of the bridge section. The model was subjected to loading in the transverse and longitudinal direction of the bridge combined with various wheel load configurations. The effect on the local stress properties was analyzed using the effective notch stress approach. A load position slightly off-center of the U-rib resulted in peak stress at the study locations. Its principal stress direction angle around the notch suggests a root-deck type of crack initiation. Testing several pavement stiffnesses revealed that using an SFRC pavement resulted in a 76%–84% reduction of peak effective notch stress compared to asphalt pavement. Furthermore, varying weld configurations demonstrated that lowering the weld penetration rate could alter the local stress position, influencing the crack initiation direction.</p>\",\"PeriodicalId\":596,\"journal\":{\"name\":\"International Journal of Steel Structures\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Steel Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13296-024-00889-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13296-024-00889-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

据报道,在日本交通条件恶劣的正交异性钢桥面板桥梁中出现了疲劳裂缝,尤其是根部-桥面和梁珠裂缝,这些裂缝是从肋板与桥面焊缝的根部开始的。我们使用有限元模型对直接影响裂缝起始的局部应力进行了研究,该模型基于裂缝发生率较高的实际桥梁截面。分析的重点是底梁交叉处的焊缝根部和桥梁截面的跨度中心。该模型承受了桥梁横向和纵向的荷载以及各种车轮荷载配置。采用有效缺口应力法分析了对局部应力特性的影响。加载位置略微偏离 U 肋中心时,研究位置的应力达到峰值。切口周围的主应力方向角表明,裂缝是由根部开始的。对几种路面刚度的测试表明,与沥青路面相比,使用 SFRC 路面可将有效缺口应力峰值降低 76%-84%。此外,不同的焊接结构表明,降低焊接渗透率可改变局部应力位置,从而影响裂缝的起始方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of Effective Notch Stress at the Root of the Rib-to-Deck Weld in an OSD Box Girder Bridge Considering the Wheel Load Position

Investigation of Effective Notch Stress at the Root of the Rib-to-Deck Weld in an OSD Box Girder Bridge Considering the Wheel Load Position

Fatigue cracks have been reported in orthotropic steel deck bridges under severe traffic conditions in Japan, particularly root-deck and bead cracks, which initiate from the root of the rib-to-deck weld. The local stress directly influencing crack initiation was investigated using a finite element model based on a section of an actual bridge with a high incidence of cracks. The analysis focused on the weld root at the floor beam intersection and the span center of the bridge section. The model was subjected to loading in the transverse and longitudinal direction of the bridge combined with various wheel load configurations. The effect on the local stress properties was analyzed using the effective notch stress approach. A load position slightly off-center of the U-rib resulted in peak stress at the study locations. Its principal stress direction angle around the notch suggests a root-deck type of crack initiation. Testing several pavement stiffnesses revealed that using an SFRC pavement resulted in a 76%–84% reduction of peak effective notch stress compared to asphalt pavement. Furthermore, varying weld configurations demonstrated that lowering the weld penetration rate could alter the local stress position, influencing the crack initiation direction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Steel Structures
International Journal of Steel Structures 工程技术-工程:土木
CiteScore
2.70
自引率
13.30%
发文量
122
审稿时长
12 months
期刊介绍: The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信