有限环的投影

IF 0.4 3区 数学 Q4 LOGIC
S. S. Korobkov
{"title":"有限环的投影","authors":"S. S. Korobkov","doi":"10.1007/s10469-024-09750-5","DOIUrl":null,"url":null,"abstract":"<p>Let <i>R</i> and <i>R</i><sup><i>φ</i></sup> be associative rings with isomorphic subring lattices, and <i>φ</i> be a lattice isomorphism (or else a projection) of the ring <i>R</i> onto the ring <i>R</i><sup><i>φ</i></sup>. We call <i>R</i><sup><i>φ</i></sup> the projective image of a ring <i>R</i> and call <i>R</i> itself the projective preimage of a ring <i>R</i><sup><i>φ</i></sup>. The main result of the first part of the paper is Theorem 5, which proves that the projective image <i>R</i><sup><i>φ</i></sup> of a one-generated finite <i>p</i>-ring <i>R</i> is also one-generated if <i>R</i><sup><i>φ</i></sup> at the same time is itself a <i>p</i>-ring. In the second part, we continue studying projections of matrix rings. The main result of this part is Theorems 6 and 7, which prove that if <i>R</i> = <i>M</i><sub><i>n</i></sub>(<i>K</i>) is the ring of all square matrices of order n over a finite ring K with identity, and <i>φ</i> is a projection of the ring <i>R</i> onto the ring <i>R</i><sup><i>φ</i></sup>, then <i>R</i><sup><i>φ</i></sup> = <i>M</i><sub><i>n</i></sub>(<i>K′</i>), where <i>K′</i> is a ring with identity, lattice-isomorphic to the ring <i>K</i>.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projections of Finite Rings\",\"authors\":\"S. S. Korobkov\",\"doi\":\"10.1007/s10469-024-09750-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>R</i> and <i>R</i><sup><i>φ</i></sup> be associative rings with isomorphic subring lattices, and <i>φ</i> be a lattice isomorphism (or else a projection) of the ring <i>R</i> onto the ring <i>R</i><sup><i>φ</i></sup>. We call <i>R</i><sup><i>φ</i></sup> the projective image of a ring <i>R</i> and call <i>R</i> itself the projective preimage of a ring <i>R</i><sup><i>φ</i></sup>. The main result of the first part of the paper is Theorem 5, which proves that the projective image <i>R</i><sup><i>φ</i></sup> of a one-generated finite <i>p</i>-ring <i>R</i> is also one-generated if <i>R</i><sup><i>φ</i></sup> at the same time is itself a <i>p</i>-ring. In the second part, we continue studying projections of matrix rings. The main result of this part is Theorems 6 and 7, which prove that if <i>R</i> = <i>M</i><sub><i>n</i></sub>(<i>K</i>) is the ring of all square matrices of order n over a finite ring K with identity, and <i>φ</i> is a projection of the ring <i>R</i> onto the ring <i>R</i><sup><i>φ</i></sup>, then <i>R</i><sup><i>φ</i></sup> = <i>M</i><sub><i>n</i></sub>(<i>K′</i>), where <i>K′</i> is a ring with identity, lattice-isomorphic to the ring <i>K</i>.</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-024-09750-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-024-09750-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

设 R 和 Rφ 是具有同构子环晶格的关联环,φ 是环 R 到环 Rφ 的晶格同构(或投影)。我们称 Rφ 为环 R 的投影像,称 R 本身为环 Rφ 的投影前像。本文第一部分的主要结果是定理 5,它证明了如果 Rφ 同时本身是一个 p 环,那么单生成有限 p 环 R 的投影图 Rφ 也是单生成的。在第二部分,我们继续研究矩阵环的投影。这部分的主要结果是定理 6 和 7,它们证明了如果 R = Mn(K)是有限环 K 上所有 n 阶方阵的同位环,并且 φ 是环 R 在环 Rφ 上的投影,那么 Rφ = Mn(K′),其中 K′是与环 K 格点同构的同位环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projections of Finite Rings

Let R and Rφ be associative rings with isomorphic subring lattices, and φ be a lattice isomorphism (or else a projection) of the ring R onto the ring Rφ. We call Rφ the projective image of a ring R and call R itself the projective preimage of a ring Rφ. The main result of the first part of the paper is Theorem 5, which proves that the projective image Rφ of a one-generated finite p-ring R is also one-generated if Rφ at the same time is itself a p-ring. In the second part, we continue studying projections of matrix rings. The main result of this part is Theorems 6 and 7, which prove that if R = Mn(K) is the ring of all square matrices of order n over a finite ring K with identity, and φ is a projection of the ring R onto the ring Rφ, then Rφ = Mn(K′), where K′ is a ring with identity, lattice-isomorphic to the ring K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信