PSLn(9) 群共轭旋转的生成集

IF 0.4 3区 数学 Q4 LOGIC
R. I. Gvozdev
{"title":"PSLn(9) 群共轭旋转的生成集","authors":"R. I. Gvozdev","doi":"10.1007/s10469-024-09748-z","DOIUrl":null,"url":null,"abstract":"<p>G. Malle, J. Saxl, and T. Weigel in [Geom. Ded., <b>49</b>, No. 1, 85-116 (1994)] formulated the following problem: For every finite simple non-Abelian group <i>G</i>, find the minimum number <i>n</i><sub><i>c</i></sub>(<i>G</i>) of generators of conjugate involutions whose product equals 1. (See also Question 14.69c in [Unsolved Problems in Group Theory. The Kourovka Notebook, No. 20, E. I. Khukhro and V. D. Mazurov (Eds.), Sobolev Institute of Mathematics SO RAN, Novosibirsk (2022); https://alglog.org/20tkt.pdf].) J. M. Ward [PhD Thesis, Queen Mary College, Univ. London (2009)] solved this problem for sporadic, alternating, and projective special linear groups <i>PSL</i><sub><i>n</i></sub>(<i>q</i>) over a field of odd order <i>q</i>, except in the case <i>q</i> = 9 for <i>n</i> ≥ 4 and also in the case <i>q</i> ≡ 3 (mod 4) for <i>n</i> = 6. Here we lift the restriction <i>q</i> ≠ 9 for dimensions <i>n</i> ≥ 9 and <i>n</i> = 6.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Sets of Conjugate Involutions of Groups PSLn(9)\",\"authors\":\"R. I. Gvozdev\",\"doi\":\"10.1007/s10469-024-09748-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>G. Malle, J. Saxl, and T. Weigel in [Geom. Ded., <b>49</b>, No. 1, 85-116 (1994)] formulated the following problem: For every finite simple non-Abelian group <i>G</i>, find the minimum number <i>n</i><sub><i>c</i></sub>(<i>G</i>) of generators of conjugate involutions whose product equals 1. (See also Question 14.69c in [Unsolved Problems in Group Theory. The Kourovka Notebook, No. 20, E. I. Khukhro and V. D. Mazurov (Eds.), Sobolev Institute of Mathematics SO RAN, Novosibirsk (2022); https://alglog.org/20tkt.pdf].) J. M. Ward [PhD Thesis, Queen Mary College, Univ. London (2009)] solved this problem for sporadic, alternating, and projective special linear groups <i>PSL</i><sub><i>n</i></sub>(<i>q</i>) over a field of odd order <i>q</i>, except in the case <i>q</i> = 9 for <i>n</i> ≥ 4 and also in the case <i>q</i> ≡ 3 (mod 4) for <i>n</i> = 6. Here we lift the restriction <i>q</i> ≠ 9 for dimensions <i>n</i> ≥ 9 and <i>n</i> = 6.</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-024-09748-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-024-09748-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

G.马勒、J.萨克斯尔和 T.魏格尔在[Geom. Ded., 49, No. 1, 85-116 (1994)]中提出了如下问题:对于每个有限简单非阿贝尔群 G,求乘积等于 1 的共轭渐开线的生成数 nc(G) 的最小值。The Kourovka Notebook, No. 20, E. I. Khukhro and V. D. Mazurov (Eds.), Sobolev Institute of Mathematics SO RAN, Novosibirsk (2022); https://alglog.org/20tkt.pdf] 中的问题 14.69c)。J. M. Ward [PhD Thesis, Queen Mary College, Univ. London (2009)] 解决了奇数阶 q 域上的零星、交替和投影特殊线性群 PSLn(q) 的这个问题,除了 n ≥ 4 的 q = 9 和 n = 6 的 q ≡ 3 (mod 4) 两种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generating Sets of Conjugate Involutions of Groups PSLn(9)

Generating Sets of Conjugate Involutions of Groups PSLn(9)

G. Malle, J. Saxl, and T. Weigel in [Geom. Ded., 49, No. 1, 85-116 (1994)] formulated the following problem: For every finite simple non-Abelian group G, find the minimum number nc(G) of generators of conjugate involutions whose product equals 1. (See also Question 14.69c in [Unsolved Problems in Group Theory. The Kourovka Notebook, No. 20, E. I. Khukhro and V. D. Mazurov (Eds.), Sobolev Institute of Mathematics SO RAN, Novosibirsk (2022); https://alglog.org/20tkt.pdf].) J. M. Ward [PhD Thesis, Queen Mary College, Univ. London (2009)] solved this problem for sporadic, alternating, and projective special linear groups PSLn(q) over a field of odd order q, except in the case q = 9 for n ≥ 4 and also in the case q ≡ 3 (mod 4) for n = 6. Here we lift the restriction q ≠ 9 for dimensions n ≥ 9 and n = 6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信