{"title":"近水平软硬夹层地层中的高速铁路隧道底:变形机理与对策","authors":"Junsheng Yang, Maolong Xiang, Jian Wu, Yuwei Li, Yipeng Xie, Jinyang Fu","doi":"10.1134/s1062739124020066","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A large number of cases of tunnel bottom deformation occur in nearly horizontally layered strata. This article analyzes the common characteristics of such tunnel bottom deformation through case studies, and introduces the limitations and requirements for bottom designs for China’s high-speed railway tunnels. The deformation mechanisms of the tunnel bottom were studied through the physical model experiment which revealed the interaction characteristics between the layered surrounding rock and the tunnel bottom structure. Through the numerical simulation study, the effect of different elevated arch curvatures on deformation of the tunnel bottom was investigated, and the effectiveness of elevation arch deepening in deformation control of the tunnel bottom was verified. The classified control countermeasures for deformation at the bottoms of the tunnels in nearly horizontally layered strata are provided</p>","PeriodicalId":16358,"journal":{"name":"Journal of Mining Science","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Speed Railway Tunnel Bottom in Nearly Horizontally Soft and Hard Interlayered Strata: Deformation Mechanism and Countermeasures\",\"authors\":\"Junsheng Yang, Maolong Xiang, Jian Wu, Yuwei Li, Yipeng Xie, Jinyang Fu\",\"doi\":\"10.1134/s1062739124020066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A large number of cases of tunnel bottom deformation occur in nearly horizontally layered strata. This article analyzes the common characteristics of such tunnel bottom deformation through case studies, and introduces the limitations and requirements for bottom designs for China’s high-speed railway tunnels. The deformation mechanisms of the tunnel bottom were studied through the physical model experiment which revealed the interaction characteristics between the layered surrounding rock and the tunnel bottom structure. Through the numerical simulation study, the effect of different elevated arch curvatures on deformation of the tunnel bottom was investigated, and the effectiveness of elevation arch deepening in deformation control of the tunnel bottom was verified. The classified control countermeasures for deformation at the bottoms of the tunnels in nearly horizontally layered strata are provided</p>\",\"PeriodicalId\":16358,\"journal\":{\"name\":\"Journal of Mining Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s1062739124020066\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s1062739124020066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
High-Speed Railway Tunnel Bottom in Nearly Horizontally Soft and Hard Interlayered Strata: Deformation Mechanism and Countermeasures
Abstract
A large number of cases of tunnel bottom deformation occur in nearly horizontally layered strata. This article analyzes the common characteristics of such tunnel bottom deformation through case studies, and introduces the limitations and requirements for bottom designs for China’s high-speed railway tunnels. The deformation mechanisms of the tunnel bottom were studied through the physical model experiment which revealed the interaction characteristics between the layered surrounding rock and the tunnel bottom structure. Through the numerical simulation study, the effect of different elevated arch curvatures on deformation of the tunnel bottom was investigated, and the effectiveness of elevation arch deepening in deformation control of the tunnel bottom was verified. The classified control countermeasures for deformation at the bottoms of the tunnels in nearly horizontally layered strata are provided
期刊介绍:
The Journal reflects the current trends of development in fundamental and applied mining sciences. It publishes original articles on geomechanics and geoinformation science, investigation of relationships between global geodynamic processes and man-induced disasters, physical and mathematical modeling of rheological and wave processes in multiphase structural geological media, rock failure, analysis and synthesis of mechanisms, automatic machines, and robots, science of mining machines, creation of resource-saving and ecologically safe technologies of mineral mining, mine aerology and mine thermal physics, coal seam degassing, mechanisms for origination of spontaneous fires and methods for their extinction, mineral dressing, and bowel exploitation.