利用认知模型改进对个人参与推荐的预测

Roderick Seow, Yunfan Zhao, Duncan Wood, Milind Tambe, Cleotilde Gonzalez
{"title":"利用认知模型改进对个人参与推荐的预测","authors":"Roderick Seow, Yunfan Zhao, Duncan Wood, Milind Tambe, Cleotilde Gonzalez","doi":"arxiv-2408.16147","DOIUrl":null,"url":null,"abstract":"For public health programs with limited resources, the ability to predict how\nbehaviors change over time and in response to interventions is crucial for\ndeciding when and to whom interventions should be allocated. Using data from a\nreal-world maternal health program, we demonstrate how a cognitive model based\non Instance-Based Learning (IBL) Theory can augment existing purely\ncomputational approaches. Our findings show that, compared to general\ntime-series forecasters (e.g., LSTMs), IBL models, which reflect human\ndecision-making processes, better predict the dynamics of individuals' states.\nAdditionally, IBL provides estimates of the volatility in individuals' states\nand their sensitivity to interventions, which can improve the efficiency of\ntraining of other time series models.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Prediction of Individual Engagement in Recommendations Using Cognitive Models\",\"authors\":\"Roderick Seow, Yunfan Zhao, Duncan Wood, Milind Tambe, Cleotilde Gonzalez\",\"doi\":\"arxiv-2408.16147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For public health programs with limited resources, the ability to predict how\\nbehaviors change over time and in response to interventions is crucial for\\ndeciding when and to whom interventions should be allocated. Using data from a\\nreal-world maternal health program, we demonstrate how a cognitive model based\\non Instance-Based Learning (IBL) Theory can augment existing purely\\ncomputational approaches. Our findings show that, compared to general\\ntime-series forecasters (e.g., LSTMs), IBL models, which reflect human\\ndecision-making processes, better predict the dynamics of individuals' states.\\nAdditionally, IBL provides estimates of the volatility in individuals' states\\nand their sensitivity to interventions, which can improve the efficiency of\\ntraining of other time series models.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于资源有限的公共卫生项目来说,预测行为如何随时间和干预措施而变化的能力对于决定何时以及向谁分配干预措施至关重要。利用来自全球孕产妇健康项目的数据,我们展示了基于实例学习(IBL)理论的认知模型如何增强现有的纯计算方法。我们的研究结果表明,与一般的时间序列预测模型(如 LSTM)相比,反映人类决策过程的 IBL 模型能更好地预测个体状态的动态变化。此外,IBL 还能估计个体状态的波动性及其对干预措施的敏感性,从而提高其他时间序列模型的训练效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Prediction of Individual Engagement in Recommendations Using Cognitive Models
For public health programs with limited resources, the ability to predict how behaviors change over time and in response to interventions is crucial for deciding when and to whom interventions should be allocated. Using data from a real-world maternal health program, we demonstrate how a cognitive model based on Instance-Based Learning (IBL) Theory can augment existing purely computational approaches. Our findings show that, compared to general time-series forecasters (e.g., LSTMs), IBL models, which reflect human decision-making processes, better predict the dynamics of individuals' states. Additionally, IBL provides estimates of the volatility in individuals' states and their sensitivity to interventions, which can improve the efficiency of training of other time series models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信