{"title":"确定在公元纪冰河时期作为冷却力量与火山爆发相互作用的气候变量","authors":"Knut Lehre Seip, Øyvind Grøn, Hui Wang","doi":"10.5194/egusphere-2024-1874","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Volcanism is known to be an instigating factor for the Late Antique Little Ice Age (LALIA, 536–660) and the Little Ice Age (LIA, 1250–1850), but little is known about when the effect of volcanism ends, and which other mechanisms prolong a cold period that includes the ice-ages’ cold periods, but also continued periods with persistent cooling. Here we show, with a high-resolution lead-lag method, where the stratospheric aerosol optical depth (SAOD) generated by volcanic emissions ceases to precede the Northern Hemisphere summer temperature (NHST). We find that five climate mechanisms cool the Northern Hemisphere (percentage time in parentheses): SAOD (51 %), total solar irradiance (TSI, 2 %), the North Atlantic oscillation (NAO, 11 %), the interdecadal Pacific oscillation (IPO, 28 %) and CO<sub>2</sub> (16 %). The last four variables overlap, and altogether the five climate variables cover 89 % of the cold period that includes LALIA and LIA. In contrast, we find an increase in atmospheric CO<sub>2</sub> over a brief period just after large volcanic eruptions. During the cold period, the five variables lead NHST, are in a cooling mode, and have sufficient strength to cool the Northern Hemisphere.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"77 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying climate variables that interchange with volcanic eruptions as cooling forces during the Common Era’s ice ages\",\"authors\":\"Knut Lehre Seip, Øyvind Grøn, Hui Wang\",\"doi\":\"10.5194/egusphere-2024-1874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Volcanism is known to be an instigating factor for the Late Antique Little Ice Age (LALIA, 536–660) and the Little Ice Age (LIA, 1250–1850), but little is known about when the effect of volcanism ends, and which other mechanisms prolong a cold period that includes the ice-ages’ cold periods, but also continued periods with persistent cooling. Here we show, with a high-resolution lead-lag method, where the stratospheric aerosol optical depth (SAOD) generated by volcanic emissions ceases to precede the Northern Hemisphere summer temperature (NHST). We find that five climate mechanisms cool the Northern Hemisphere (percentage time in parentheses): SAOD (51 %), total solar irradiance (TSI, 2 %), the North Atlantic oscillation (NAO, 11 %), the interdecadal Pacific oscillation (IPO, 28 %) and CO<sub>2</sub> (16 %). The last four variables overlap, and altogether the five climate variables cover 89 % of the cold period that includes LALIA and LIA. In contrast, we find an increase in atmospheric CO<sub>2</sub> over a brief period just after large volcanic eruptions. During the cold period, the five variables lead NHST, are in a cooling mode, and have sufficient strength to cool the Northern Hemisphere.\",\"PeriodicalId\":10332,\"journal\":{\"name\":\"Climate of The Past\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate of The Past\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-1874\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1874","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要。众所周知,火山爆发是古代晚期小冰河时期(LALIA,536-660 年)和小冰河时期(LIA,1250-1850 年)的诱发因素,但人们对火山爆发的影响何时结束,以及哪些其他机制延长了包括冰河时期在内的寒冷时期,以及持续冷却的时期知之甚少。在这里,我们用一种高分辨率的前导-滞后方法展示了火山排放产生的平流层气溶胶光学深度(SAOD)在什么情况下不再先于北半球夏季温度(NHST)。我们发现有五种气候机制使北半球降温(括号内为时间百分比):SAOD(51%)、太阳总辐照度(TSI,2%)、北大西洋涛动(NAO,11%)、太平洋年代际涛动(IPO,28%)和二氧化碳(16%)。后四个变量相互重叠,这五个气候变量共覆盖了包括 LALIA 和 LIA 的寒冷时期的 89%。相比之下,我们发现大气中的二氧化碳在火山大爆发后的短暂时期内有所增加。在寒冷时期,这五个变量领先于 NHST,处于冷却模式,并有足够的强度冷却北半球。
Identifying climate variables that interchange with volcanic eruptions as cooling forces during the Common Era’s ice ages
Abstract. Volcanism is known to be an instigating factor for the Late Antique Little Ice Age (LALIA, 536–660) and the Little Ice Age (LIA, 1250–1850), but little is known about when the effect of volcanism ends, and which other mechanisms prolong a cold period that includes the ice-ages’ cold periods, but also continued periods with persistent cooling. Here we show, with a high-resolution lead-lag method, where the stratospheric aerosol optical depth (SAOD) generated by volcanic emissions ceases to precede the Northern Hemisphere summer temperature (NHST). We find that five climate mechanisms cool the Northern Hemisphere (percentage time in parentheses): SAOD (51 %), total solar irradiance (TSI, 2 %), the North Atlantic oscillation (NAO, 11 %), the interdecadal Pacific oscillation (IPO, 28 %) and CO2 (16 %). The last four variables overlap, and altogether the five climate variables cover 89 % of the cold period that includes LALIA and LIA. In contrast, we find an increase in atmospheric CO2 over a brief period just after large volcanic eruptions. During the cold period, the five variables lead NHST, are in a cooling mode, and have sufficient strength to cool the Northern Hemisphere.
期刊介绍:
Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope.
The main subject areas are the following:
reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives;
development and validation of new proxies, improvements of the precision and accuracy of proxy data;
theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales;
simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.