Thomas Lew, Riccardo Bonalli, Lucas Janson, Marco Pavone
{"title":"估计具有平滑边界的集合图像的凸面全形:误差界限与应用","authors":"Thomas Lew, Riccardo Bonalli, Lucas Janson, Marco Pavone","doi":"10.1007/s00454-024-00683-5","DOIUrl":null,"url":null,"abstract":"<p>We study the problem of estimating the convex hull of the image <span>\\(f(X)\\subset {\\mathbb {R}}^n\\)</span> of a compact set <span>\\(X\\subset {\\mathbb {R}}^m\\)</span> with smooth boundary through a smooth function <span>\\(f:{\\mathbb {R}}^m\\rightarrow {\\mathbb {R}}^n\\)</span>. Assuming that <i>f</i> is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of <i>f</i>(<i>X</i>) and the convex hull of the images <span>\\(f(x_i)\\)</span> of <i>M</i> sampled inputs <span>\\(x_i\\)</span> on the boundary of <i>X</i>. When applied to the problem of geometric inference from a random sample, our results give error bounds that are tighter and more general than in previous work. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the Convex Hull of the Image of a Set with Smooth Boundary: Error Bounds and Applications\",\"authors\":\"Thomas Lew, Riccardo Bonalli, Lucas Janson, Marco Pavone\",\"doi\":\"10.1007/s00454-024-00683-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the problem of estimating the convex hull of the image <span>\\\\(f(X)\\\\subset {\\\\mathbb {R}}^n\\\\)</span> of a compact set <span>\\\\(X\\\\subset {\\\\mathbb {R}}^m\\\\)</span> with smooth boundary through a smooth function <span>\\\\(f:{\\\\mathbb {R}}^m\\\\rightarrow {\\\\mathbb {R}}^n\\\\)</span>. Assuming that <i>f</i> is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of <i>f</i>(<i>X</i>) and the convex hull of the images <span>\\\\(f(x_i)\\\\)</span> of <i>M</i> sampled inputs <span>\\\\(x_i\\\\)</span> on the boundary of <i>X</i>. When applied to the problem of geometric inference from a random sample, our results give error bounds that are tighter and more general than in previous work. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00683-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00683-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的问题是通过光滑函数 \(f:{\mathbb {R}^mrightarrow {\mathbb {R}^n\) 来估计具有光滑边界的紧凑集合 \(X\subset {\mathbb {R}^m\) 的凸面图像(f(X)\subset {\mathbb {R}^m\ )。假定 f 是一个潜入函数,我们推导出了 f(X) 的凸壳与 X 边界上 M 个采样输入 \(x_i\) 的图像 \(f(x_i)\) 的凸壳之间的豪斯多夫距离的新约束。当应用到从随机样本进行几何推理的问题时,我们的结果给出的误差约束比之前的工作更严格、更普遍。我们介绍了鲁棒优化、动态系统可达性分析和有界不确定性下的鲁棒轨迹优化等问题的应用。
Estimating the Convex Hull of the Image of a Set with Smooth Boundary: Error Bounds and Applications
We study the problem of estimating the convex hull of the image \(f(X)\subset {\mathbb {R}}^n\) of a compact set \(X\subset {\mathbb {R}}^m\) with smooth boundary through a smooth function \(f:{\mathbb {R}}^m\rightarrow {\mathbb {R}}^n\). Assuming that f is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of f(X) and the convex hull of the images \(f(x_i)\) of M sampled inputs \(x_i\) on the boundary of X. When applied to the problem of geometric inference from a random sample, our results give error bounds that are tighter and more general than in previous work. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.