估计具有平滑边界的集合图像的凸面全形:误差界限与应用

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Thomas Lew, Riccardo Bonalli, Lucas Janson, Marco Pavone
{"title":"估计具有平滑边界的集合图像的凸面全形:误差界限与应用","authors":"Thomas Lew, Riccardo Bonalli, Lucas Janson, Marco Pavone","doi":"10.1007/s00454-024-00683-5","DOIUrl":null,"url":null,"abstract":"<p>We study the problem of estimating the convex hull of the image <span>\\(f(X)\\subset {\\mathbb {R}}^n\\)</span> of a compact set <span>\\(X\\subset {\\mathbb {R}}^m\\)</span> with smooth boundary through a smooth function <span>\\(f:{\\mathbb {R}}^m\\rightarrow {\\mathbb {R}}^n\\)</span>. Assuming that <i>f</i> is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of <i>f</i>(<i>X</i>) and the convex hull of the images <span>\\(f(x_i)\\)</span> of <i>M</i> sampled inputs <span>\\(x_i\\)</span> on the boundary of <i>X</i>. When applied to the problem of geometric inference from a random sample, our results give error bounds that are tighter and more general than in previous work. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the Convex Hull of the Image of a Set with Smooth Boundary: Error Bounds and Applications\",\"authors\":\"Thomas Lew, Riccardo Bonalli, Lucas Janson, Marco Pavone\",\"doi\":\"10.1007/s00454-024-00683-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the problem of estimating the convex hull of the image <span>\\\\(f(X)\\\\subset {\\\\mathbb {R}}^n\\\\)</span> of a compact set <span>\\\\(X\\\\subset {\\\\mathbb {R}}^m\\\\)</span> with smooth boundary through a smooth function <span>\\\\(f:{\\\\mathbb {R}}^m\\\\rightarrow {\\\\mathbb {R}}^n\\\\)</span>. Assuming that <i>f</i> is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of <i>f</i>(<i>X</i>) and the convex hull of the images <span>\\\\(f(x_i)\\\\)</span> of <i>M</i> sampled inputs <span>\\\\(x_i\\\\)</span> on the boundary of <i>X</i>. When applied to the problem of geometric inference from a random sample, our results give error bounds that are tighter and more general than in previous work. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00683-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00683-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的问题是通过光滑函数 \(f:{\mathbb {R}^mrightarrow {\mathbb {R}^n\) 来估计具有光滑边界的紧凑集合 \(X\subset {\mathbb {R}^m\) 的凸面图像(f(X)\subset {\mathbb {R}^m\ )。假定 f 是一个潜入函数,我们推导出了 f(X) 的凸壳与 X 边界上 M 个采样输入 \(x_i\) 的图像 \(f(x_i)\) 的凸壳之间的豪斯多夫距离的新约束。当应用到从随机样本进行几何推理的问题时,我们的结果给出的误差约束比之前的工作更严格、更普遍。我们介绍了鲁棒优化、动态系统可达性分析和有界不确定性下的鲁棒轨迹优化等问题的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimating the Convex Hull of the Image of a Set with Smooth Boundary: Error Bounds and Applications

Estimating the Convex Hull of the Image of a Set with Smooth Boundary: Error Bounds and Applications

We study the problem of estimating the convex hull of the image \(f(X)\subset {\mathbb {R}}^n\) of a compact set \(X\subset {\mathbb {R}}^m\) with smooth boundary through a smooth function \(f:{\mathbb {R}}^m\rightarrow {\mathbb {R}}^n\). Assuming that f is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of f(X) and the convex hull of the images \(f(x_i)\) of M sampled inputs \(x_i\) on the boundary of X. When applied to the problem of geometric inference from a random sample, our results give error bounds that are tighter and more general than in previous work. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信