可元图的结构

Pub Date : 2024-08-30 DOI:10.1007/s00454-024-00685-3
Maria Chudnovsky, Daniel Cizma, Nati Linial
{"title":"可元图的结构","authors":"Maria Chudnovsky, Daniel Cizma, Nati Linial","doi":"10.1007/s00454-024-00685-3","DOIUrl":null,"url":null,"abstract":"<p>A <i>consistent path system</i> in a graph <i>G</i> is an intersection-closed collection of paths, with exactly one path between any two vertices in <i>G</i>. We call <i>G</i> <i>metrizable</i> if every consistent path system in it is the system of geodesic paths defined by assigning some positive lengths to its edges. We show that metrizable graphs are, in essence, subdivisions of a small family of basic graphs with additional compliant edges. In particular, we show that every metrizable graph with 11 vertices or more is outerplanar plus one vertex.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Structure of Metrizable Graphs\",\"authors\":\"Maria Chudnovsky, Daniel Cizma, Nati Linial\",\"doi\":\"10.1007/s00454-024-00685-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>consistent path system</i> in a graph <i>G</i> is an intersection-closed collection of paths, with exactly one path between any two vertices in <i>G</i>. We call <i>G</i> <i>metrizable</i> if every consistent path system in it is the system of geodesic paths defined by assigning some positive lengths to its edges. We show that metrizable graphs are, in essence, subdivisions of a small family of basic graphs with additional compliant edges. In particular, we show that every metrizable graph with 11 vertices or more is outerplanar plus one vertex.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00685-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00685-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图 G 中的一致路径系统是路径的交集-封闭集合,G 中任意两个顶点之间都有一条路径。如果图 G 中的每个一致路径系统都是通过为其边分配一些正长度而定义的大地路径系统,我们就称其为可元胞图。我们证明,可元胞图实质上是基本图的一个小族的细分,带有额外的符合边。特别是,我们证明了每一个有 11 个或更多顶点的可元胞图都是外平面加一个顶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Structure of Metrizable Graphs

分享
查看原文
The Structure of Metrizable Graphs

A consistent path system in a graph G is an intersection-closed collection of paths, with exactly one path between any two vertices in G. We call G metrizable if every consistent path system in it is the system of geodesic paths defined by assigning some positive lengths to its edges. We show that metrizable graphs are, in essence, subdivisions of a small family of basic graphs with additional compliant edges. In particular, we show that every metrizable graph with 11 vertices or more is outerplanar plus one vertex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信