实射影平面中的厄尔多斯-塞克雷斯类型问题

Pub Date : 2024-09-09 DOI:10.1007/s00454-024-00691-5
Martin Balko, Manfred Scheucher, Pavel Valtr
{"title":"实射影平面中的厄尔多斯-塞克雷斯类型问题","authors":"Martin Balko, Manfred Scheucher, Pavel Valtr","doi":"10.1007/s00454-024-00691-5","DOIUrl":null,"url":null,"abstract":"<p>We consider point sets in the real projective plane <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> and explore variants of classical extremal problems about planar point sets in this setting, with a main focus on Erdős–Szekeres-type problems. We provide asymptotically tight bounds for a variant of the Erdős–Szekeres theorem about point sets in convex position in <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span>, which was initiated by Harborth and Möller in 1994. The notion of convex position in <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> agrees with the definition of convex sets introduced by Steinitz in 1913. For <span>\\(k \\ge 3\\)</span>, an <i>(affine) </i><i>k</i>-<i>hole</i> in a finite set <span>\\(S \\subseteq {\\mathbb {R}}^2\\)</span> is a set of <i>k</i> points from <i>S</i> in convex position with no point of <i>S</i> in the interior of their convex hull. After introducing a new notion of <i>k</i>-holes for points sets from <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span>, called <i>projective </i><i>k</i>-<i>holes</i>, we find arbitrarily large finite sets of points from <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> with no projective 8-holes, providing an analogue of a classical planar construction by Horton from 1983. We also prove that they contain only quadratically many projective <i>k</i>-holes for <span>\\(k \\le 7\\)</span>. On the other hand, we show that the number of <i>k</i>-holes can be substantially larger in <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> than in <span>\\({\\mathbb {R}}^2\\)</span> by constructing, for every <span>\\(k \\in \\{3,\\dots ,6\\}\\)</span>, sets of <i>n</i> points from <span>\\({\\mathbb {R}}^2 \\subset {{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> with <span>\\(\\Omega (n^{3-3/5k})\\)</span> projective <i>k</i>-holes and only <span>\\(O(n^2)\\)</span> affine <i>k</i>-holes. Last but not least, we prove several other results, for example about projective holes in random point sets in <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> and about some algorithmic aspects. The study of extremal problems about point sets in <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> opens a new area of research, which we support by posing several open problems.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erdős–Szekeres-Type Problems in the Real Projective Plane\",\"authors\":\"Martin Balko, Manfred Scheucher, Pavel Valtr\",\"doi\":\"10.1007/s00454-024-00691-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider point sets in the real projective plane <span>\\\\({{\\\\,\\\\mathrm{{\\\\mathbb {R}}{\\\\mathcal {P}}^2}\\\\,}}\\\\)</span> and explore variants of classical extremal problems about planar point sets in this setting, with a main focus on Erdős–Szekeres-type problems. We provide asymptotically tight bounds for a variant of the Erdős–Szekeres theorem about point sets in convex position in <span>\\\\({{\\\\,\\\\mathrm{{\\\\mathbb {R}}{\\\\mathcal {P}}^2}\\\\,}}\\\\)</span>, which was initiated by Harborth and Möller in 1994. The notion of convex position in <span>\\\\({{\\\\,\\\\mathrm{{\\\\mathbb {R}}{\\\\mathcal {P}}^2}\\\\,}}\\\\)</span> agrees with the definition of convex sets introduced by Steinitz in 1913. For <span>\\\\(k \\\\ge 3\\\\)</span>, an <i>(affine) </i><i>k</i>-<i>hole</i> in a finite set <span>\\\\(S \\\\subseteq {\\\\mathbb {R}}^2\\\\)</span> is a set of <i>k</i> points from <i>S</i> in convex position with no point of <i>S</i> in the interior of their convex hull. After introducing a new notion of <i>k</i>-holes for points sets from <span>\\\\({{\\\\,\\\\mathrm{{\\\\mathbb {R}}{\\\\mathcal {P}}^2}\\\\,}}\\\\)</span>, called <i>projective </i><i>k</i>-<i>holes</i>, we find arbitrarily large finite sets of points from <span>\\\\({{\\\\,\\\\mathrm{{\\\\mathbb {R}}{\\\\mathcal {P}}^2}\\\\,}}\\\\)</span> with no projective 8-holes, providing an analogue of a classical planar construction by Horton from 1983. We also prove that they contain only quadratically many projective <i>k</i>-holes for <span>\\\\(k \\\\le 7\\\\)</span>. On the other hand, we show that the number of <i>k</i>-holes can be substantially larger in <span>\\\\({{\\\\,\\\\mathrm{{\\\\mathbb {R}}{\\\\mathcal {P}}^2}\\\\,}}\\\\)</span> than in <span>\\\\({\\\\mathbb {R}}^2\\\\)</span> by constructing, for every <span>\\\\(k \\\\in \\\\{3,\\\\dots ,6\\\\}\\\\)</span>, sets of <i>n</i> points from <span>\\\\({\\\\mathbb {R}}^2 \\\\subset {{\\\\,\\\\mathrm{{\\\\mathbb {R}}{\\\\mathcal {P}}^2}\\\\,}}\\\\)</span> with <span>\\\\(\\\\Omega (n^{3-3/5k})\\\\)</span> projective <i>k</i>-holes and only <span>\\\\(O(n^2)\\\\)</span> affine <i>k</i>-holes. Last but not least, we prove several other results, for example about projective holes in random point sets in <span>\\\\({{\\\\,\\\\mathrm{{\\\\mathbb {R}}{\\\\mathcal {P}}^2}\\\\,}}\\\\)</span> and about some algorithmic aspects. The study of extremal problems about point sets in <span>\\\\({{\\\\,\\\\mathrm{{\\\\mathbb {R}}{\\\\mathcal {P}}^2}\\\\,}}\\\\)</span> opens a new area of research, which we support by posing several open problems.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00691-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00691-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了实射影平面 ({{\\mathrm{{mathbb {R}}{{mathcal {P}}^2}}\} )中的点集,并探索了平面点集的经典极值问题在此背景下的变体,主要集中于厄尔多斯-斯泽克尔(Erdős-Szekeres)型问题。我们为 Erdős-Szekeres 定理的一个变体提供了关于 \({{\,\mathrm{\mathbb {R}}{\mathcal {P}}^2}\,}}) 中凸位置点集的渐近紧约束,该定理由 Harborth 和 Möller 于 1994 年提出。在 \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}}\) 中凸位置的概念与 Steinitz 在 1913 年提出的凸集定义一致。对于(k )来说,有限集(S )中的(仿射)k 洞是 S 中处于凸位置的 k 个点的集合,在它们的凸壳内部没有 S 的点。在为来自 \({{\,\mathrm{{\mathbb {R}}\mathcal {P}}^2}\,}}) 的点集引入一个新的 k 洞概念(称为投影 k 洞)之后,我们发现了来自 \({{\,\mathrm{{\mathbb {R}}\mathcal {P}}^2}\,}} 的任意大的有限点集、\)中没有投影 8 孔的任意大的有限点集,这提供了霍顿(Horton)1983 年经典平面构造的类比。我们还证明了它们只包含 \(k \le 7\) 的二次k洞。另一方面,我们证明了对于每一个(k in \{3、\dots ,6\}\), sets of n points from \({\mathbb {R}}^2 \subset {{\,\mathrm{{\mathbb {R}}{mathcal {P}}^2}\,}}\) with \(\Omega (n^{3-3/5k})\) projective k-holes and only \(O(n^2)\) affine k-holes.最后但并非最不重要的是,我们还证明了其他几个结果,例如关于随机点集中的投影孔的({{\,\mathrm{{mathbb {R}}{mathcal {P}}^2}\}} )和一些算法方面的结果。关于点集的极值问题的研究开辟了一个新的研究领域,我们通过提出几个开放性问题来支持这一研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Erdős–Szekeres-Type Problems in the Real Projective Plane

分享
查看原文
Erdős–Szekeres-Type Problems in the Real Projective Plane

We consider point sets in the real projective plane \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) and explore variants of classical extremal problems about planar point sets in this setting, with a main focus on Erdős–Szekeres-type problems. We provide asymptotically tight bounds for a variant of the Erdős–Szekeres theorem about point sets in convex position in \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\), which was initiated by Harborth and Möller in 1994. The notion of convex position in \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) agrees with the definition of convex sets introduced by Steinitz in 1913. For \(k \ge 3\), an (affine) k-hole in a finite set \(S \subseteq {\mathbb {R}}^2\) is a set of k points from S in convex position with no point of S in the interior of their convex hull. After introducing a new notion of k-holes for points sets from \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\), called projective k-holes, we find arbitrarily large finite sets of points from \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) with no projective 8-holes, providing an analogue of a classical planar construction by Horton from 1983. We also prove that they contain only quadratically many projective k-holes for \(k \le 7\). On the other hand, we show that the number of k-holes can be substantially larger in \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) than in \({\mathbb {R}}^2\) by constructing, for every \(k \in \{3,\dots ,6\}\), sets of n points from \({\mathbb {R}}^2 \subset {{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) with \(\Omega (n^{3-3/5k})\) projective k-holes and only \(O(n^2)\) affine k-holes. Last but not least, we prove several other results, for example about projective holes in random point sets in \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) and about some algorithmic aspects. The study of extremal problems about point sets in \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) opens a new area of research, which we support by posing several open problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信