AgentSimulator:基于代理的数据驱动型业务流程模拟方法

Lukas Kirchdorfer, Robert Blümel, Timotheus Kampik, Han van der Aa, Heiner Stuckenschmidt
{"title":"AgentSimulator:基于代理的数据驱动型业务流程模拟方法","authors":"Lukas Kirchdorfer, Robert Blümel, Timotheus Kampik, Han van der Aa, Heiner Stuckenschmidt","doi":"arxiv-2408.08571","DOIUrl":null,"url":null,"abstract":"Business process simulation (BPS) is a versatile technique for estimating\nprocess performance across various scenarios. Traditionally, BPS approaches\nemploy a control-flow-first perspective by enriching a process model with\nsimulation parameters. Although such approaches can mimic the behavior of\ncentrally orchestrated processes, such as those supported by workflow systems,\ncurrent control-flow-first approaches cannot faithfully capture the dynamics of\nreal-world processes that involve distinct resource behavior and decentralized\ndecision-making. Recognizing this issue, this paper introduces AgentSimulator,\na resource-first BPS approach that discovers a multi-agent system from an event\nlog, modeling distinct resource behaviors and interaction patterns to simulate\nthe underlying process. Our experiments show that AgentSimulator achieves\nstate-of-the-art simulation accuracy with significantly lower computation times\nthan existing approaches while providing high interpretability and adaptability\nto different types of process-execution scenarios.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AgentSimulator: An Agent-based Approach for Data-driven Business Process Simulation\",\"authors\":\"Lukas Kirchdorfer, Robert Blümel, Timotheus Kampik, Han van der Aa, Heiner Stuckenschmidt\",\"doi\":\"arxiv-2408.08571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Business process simulation (BPS) is a versatile technique for estimating\\nprocess performance across various scenarios. Traditionally, BPS approaches\\nemploy a control-flow-first perspective by enriching a process model with\\nsimulation parameters. Although such approaches can mimic the behavior of\\ncentrally orchestrated processes, such as those supported by workflow systems,\\ncurrent control-flow-first approaches cannot faithfully capture the dynamics of\\nreal-world processes that involve distinct resource behavior and decentralized\\ndecision-making. Recognizing this issue, this paper introduces AgentSimulator,\\na resource-first BPS approach that discovers a multi-agent system from an event\\nlog, modeling distinct resource behaviors and interaction patterns to simulate\\nthe underlying process. Our experiments show that AgentSimulator achieves\\nstate-of-the-art simulation accuracy with significantly lower computation times\\nthan existing approaches while providing high interpretability and adaptability\\nto different types of process-execution scenarios.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

业务流程模拟(BPS)是一种多用途技术,用于估算各种情况下的流程性能。传统的 BPS 方法采用控制流优先的视角,通过模拟参数来丰富流程模型。虽然这种方法可以模仿集中协调流程的行为,如工作流系统支持的流程,但目前的控制流优先方法无法忠实捕捉现实世界流程的动态,因为这些流程涉及不同的资源行为和分散决策。认识到这一问题后,本文引入了 AgentSimulator,这是一种资源优先的 BPS 方法,它能从事件日志中发现多代理系统,模拟不同的资源行为和交互模式,从而模拟底层流程。我们的实验表明,与现有方法相比,AgentSimulator 的计算时间大大缩短,达到了最先进的仿真精度,同时对不同类型的流程执行场景具有很高的可解释性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AgentSimulator: An Agent-based Approach for Data-driven Business Process Simulation
Business process simulation (BPS) is a versatile technique for estimating process performance across various scenarios. Traditionally, BPS approaches employ a control-flow-first perspective by enriching a process model with simulation parameters. Although such approaches can mimic the behavior of centrally orchestrated processes, such as those supported by workflow systems, current control-flow-first approaches cannot faithfully capture the dynamics of real-world processes that involve distinct resource behavior and decentralized decision-making. Recognizing this issue, this paper introduces AgentSimulator, a resource-first BPS approach that discovers a multi-agent system from an event log, modeling distinct resource behaviors and interaction patterns to simulate the underlying process. Our experiments show that AgentSimulator achieves state-of-the-art simulation accuracy with significantly lower computation times than existing approaches while providing high interpretability and adaptability to different types of process-execution scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信