带势能的质量超临界准薛定谔方程的归一化解的存在性

Fengshuang Gao, Yuxia Guo
{"title":"带势能的质量超临界准薛定谔方程的归一化解的存在性","authors":"Fengshuang Gao, Yuxia Guo","doi":"10.1007/s12220-024-01779-3","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the existence of normalized solutions to a mass-supercritical quasilinear Schrödinger equation: </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\Delta u-u\\Delta u^2+V(x)u+\\lambda u=g(u),\\hbox { in }{\\mathbb {R}}^N, \\\\ u\\ge 0, \\end{array}\\right. \\end{aligned}$$</span>(0.1)<p>satisfying the constraint <span>\\(\\int _{{\\mathbb {R}}^N}u^2=a\\)</span>. We will investigate how the potential and the nonlinearity effect the existence of the normalized solution. As a consequence, under a smallness assumption on <i>V</i>(<i>x</i>) and a relatively strict growth condition on <i>g</i>, we obtain a normalized solution for <span>\\(N=2\\)</span>, 3. Moreover, when <i>V</i>(<i>x</i>) is not too small in some sense, we show the existence of a normalized solution for <span>\\(N\\ge 2\\)</span> and <span>\\(g(u)={u}^{q-2}u\\)</span> with <span>\\(4+\\frac{4}{N}&lt;q&lt;2\\cdot 2^*\\)</span>.\n</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Normalized Solutions for Mass Super-Critical Quasilinear Schrödinger Equation with Potentials\",\"authors\":\"Fengshuang Gao, Yuxia Guo\",\"doi\":\"10.1007/s12220-024-01779-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the existence of normalized solutions to a mass-supercritical quasilinear Schrödinger equation: </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} -\\\\Delta u-u\\\\Delta u^2+V(x)u+\\\\lambda u=g(u),\\\\hbox { in }{\\\\mathbb {R}}^N, \\\\\\\\ u\\\\ge 0, \\\\end{array}\\\\right. \\\\end{aligned}$$</span>(0.1)<p>satisfying the constraint <span>\\\\(\\\\int _{{\\\\mathbb {R}}^N}u^2=a\\\\)</span>. We will investigate how the potential and the nonlinearity effect the existence of the normalized solution. As a consequence, under a smallness assumption on <i>V</i>(<i>x</i>) and a relatively strict growth condition on <i>g</i>, we obtain a normalized solution for <span>\\\\(N=2\\\\)</span>, 3. Moreover, when <i>V</i>(<i>x</i>) is not too small in some sense, we show the existence of a normalized solution for <span>\\\\(N\\\\ge 2\\\\)</span> and <span>\\\\(g(u)={u}^{q-2}u\\\\)</span> with <span>\\\\(4+\\\\frac{4}{N}&lt;q&lt;2\\\\cdot 2^*\\\\)</span>.\\n</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01779-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01779-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注质量超临界准线性薛定谔方程的归一化解的存在: $$\begin{aligned}-Delta u-u\Delta u^2+V(x)u+\lambda u=g(u),\hbox { in }{{mathbb {R}}^N,\ u\ge 0,\end{array}\right.\end{aligned}$$(0.1)satisfying the constraint \(\int _{{mathbb {R}}^N}u^2=a\).我们将研究势和非线性如何影响归一化解的存在。因此,在V(x)较小的假设条件和g相对严格的增长条件下,我们得到了\(N=2\), 3的归一化解。 此外,当V(x)在某种意义上不算太小时,我们证明了\(N\ge 2\) and \(g(u)={u}^{q-2}u\) with \(4+\frac{4}{N}<q<2\cdot 2^*\)的归一化解的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Normalized Solutions for Mass Super-Critical Quasilinear Schrödinger Equation with Potentials

This paper is concerned with the existence of normalized solutions to a mass-supercritical quasilinear Schrödinger equation:

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u-u\Delta u^2+V(x)u+\lambda u=g(u),\hbox { in }{\mathbb {R}}^N, \\ u\ge 0, \end{array}\right. \end{aligned}$$(0.1)

satisfying the constraint \(\int _{{\mathbb {R}}^N}u^2=a\). We will investigate how the potential and the nonlinearity effect the existence of the normalized solution. As a consequence, under a smallness assumption on V(x) and a relatively strict growth condition on g, we obtain a normalized solution for \(N=2\), 3. Moreover, when V(x) is not too small in some sense, we show the existence of a normalized solution for \(N\ge 2\) and \(g(u)={u}^{q-2}u\) with \(4+\frac{4}{N}<q<2\cdot 2^*\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信