哈特里-福克-波哥留布夫理论中的均质空间

Claudia D. Alvarado, Eduardo Chiumiento
{"title":"哈特里-福克-波哥留布夫理论中的均质空间","authors":"Claudia D. Alvarado, Eduardo Chiumiento","doi":"10.1007/s12220-024-01776-6","DOIUrl":null,"url":null,"abstract":"<p>We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree–Fock–Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kähler homogeneous spaces.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous Spaces in Hartree–Fock–Bogoliubov Theory\",\"authors\":\"Claudia D. Alvarado, Eduardo Chiumiento\",\"doi\":\"10.1007/s12220-024-01776-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree–Fock–Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kähler homogeneous spaces.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01776-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01776-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了哈特里-福克-波哥留布夫理论中出现的波哥留布夫变换对可容许广义一粒子密度矩阵的作用。我们证明了这一作用的轨道是还原同质空间,并给出了几种等价关系,描述了当它们是自然环境空间的嵌入子漫游时的特征。我们利用李理论论证了这些轨道具有不变的交映形式。此外,如果轨道中的算子具有有限谱,那么我们就会得到轨道实际上是凯勒均质空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogeneous Spaces in Hartree–Fock–Bogoliubov Theory

We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree–Fock–Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kähler homogeneous spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信