建立在球准巴纳赫空间上的特里贝尔-利佐尔金类型空间的扩展与嵌入

Zongze Zeng, Dachun Yang, Wen Yuan
{"title":"建立在球准巴纳赫空间上的特里贝尔-利佐尔金类型空间的扩展与嵌入","authors":"Zongze Zeng, Dachun Yang, Wen Yuan","doi":"10.1007/s12220-024-01761-z","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span> be a domain and <i>X</i> be a ball quasi-Banach function space with some extra mild assumptions. In this article, the authors establish the extension theorem about inhomogeneous <i>X</i>-based Triebel–Lizorkin-type spaces <span>\\(F^s_{X,q}(\\Omega )\\)</span> for any <span>\\(s\\in (0,1)\\)</span> and <span>\\(q\\in (0,\\infty )\\)</span> and prove that <span>\\(\\Omega \\)</span> is an <span>\\(F^s_{X,q}(\\Omega )\\)</span>-extension domain if and only if <span>\\(\\Omega \\)</span> satisfies the measure density condition. The authors also establish the Sobolev embedding about <span>\\(F^s_{X,q}(\\Omega )\\)</span> with an extra mild assumption, that is, <i>X</i> satisfies the extra <span>\\(\\beta \\)</span>-doubling condition. These extension results when <i>X</i> is the Lebesgue space coincide with the known best ones of the fractional Sobolev space and the Triebel–Lizorkin space. Moreover, all these results have a wide range of applications and, particularly, even when they are applied, respectively, to weighted Lebesgue spaces, Morrey spaces, variable Lebesgue spaces, Orlicz spaces, Orlicz-slice spaces, mixed-norm Lebesgue spaces, and Lorentz spaces, the obtained results are also new. The main novelty of this article exists in that the authors use the boundedness of the Hardy–Littlewood maximal operator and the extrapolation about <i>X</i> to overcome those essential difficulties caused by the deficiency of the explicit expression of the norm of <i>X</i>.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension and Embedding of Triebel–Lizorkin-Type Spaces Built on Ball Quasi-Banach Spaces\",\"authors\":\"Zongze Zeng, Dachun Yang, Wen Yuan\",\"doi\":\"10.1007/s12220-024-01761-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\Omega \\\\subset \\\\mathbb {R}^n\\\\)</span> be a domain and <i>X</i> be a ball quasi-Banach function space with some extra mild assumptions. In this article, the authors establish the extension theorem about inhomogeneous <i>X</i>-based Triebel–Lizorkin-type spaces <span>\\\\(F^s_{X,q}(\\\\Omega )\\\\)</span> for any <span>\\\\(s\\\\in (0,1)\\\\)</span> and <span>\\\\(q\\\\in (0,\\\\infty )\\\\)</span> and prove that <span>\\\\(\\\\Omega \\\\)</span> is an <span>\\\\(F^s_{X,q}(\\\\Omega )\\\\)</span>-extension domain if and only if <span>\\\\(\\\\Omega \\\\)</span> satisfies the measure density condition. The authors also establish the Sobolev embedding about <span>\\\\(F^s_{X,q}(\\\\Omega )\\\\)</span> with an extra mild assumption, that is, <i>X</i> satisfies the extra <span>\\\\(\\\\beta \\\\)</span>-doubling condition. These extension results when <i>X</i> is the Lebesgue space coincide with the known best ones of the fractional Sobolev space and the Triebel–Lizorkin space. Moreover, all these results have a wide range of applications and, particularly, even when they are applied, respectively, to weighted Lebesgue spaces, Morrey spaces, variable Lebesgue spaces, Orlicz spaces, Orlicz-slice spaces, mixed-norm Lebesgue spaces, and Lorentz spaces, the obtained results are also new. The main novelty of this article exists in that the authors use the boundedness of the Hardy–Littlewood maximal operator and the extrapolation about <i>X</i> to overcome those essential difficulties caused by the deficiency of the explicit expression of the norm of <i>X</i>.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01761-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01761-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\Omega \subset \mathbb {R}^n\) 是一个域,X 是一个球准巴纳赫函数空间,并有一些额外的温和假设。在这篇文章中,作者建立了关于基于 X 的非均质 Triebel-Lizorkin 型空间的扩展定理,即对于任意 \(s\in (0. 1)\) 和 \(F^s_{X,q}(\Omega )\), \(F^s_{X,q}(\Omega )\) 都是非均质的、1) and (q\in (0,\infty )),并证明当且仅当\(\Omega \)满足度量密度条件时,\(\Omega \)是一个\(F^s_{X,q}(\Omega )\)-扩展域。作者还建立了关于 \(F^s_{X,q}(\Omega )\) 的索波列夫嵌入,并附加了一个温和的假设,即 X 满足额外的 \(\beta \)-加倍条件。当 X 是 Lebesgue 空间时,这些扩展结果与分数 Sobolev 空间和 Triebel-Lizorkin 空间的已知最佳结果相吻合。此外,所有这些结果都有广泛的应用范围,特别是,即使分别应用于加权 Lebesgue 空间、Morrey 空间、可变 Lebesgue 空间、Orlicz 空间、Orlicz-slice 空间、混合规范 Lebesgue 空间和 Lorentz 空间,所得到的结果也是新的。本文的主要新颖之处在于,作者利用哈代-利特尔伍德最大算子的有界性和关于 X 的外推法,克服了因 X 的规范表达不明确而造成的本质困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension and Embedding of Triebel–Lizorkin-Type Spaces Built on Ball Quasi-Banach Spaces

Let \(\Omega \subset \mathbb {R}^n\) be a domain and X be a ball quasi-Banach function space with some extra mild assumptions. In this article, the authors establish the extension theorem about inhomogeneous X-based Triebel–Lizorkin-type spaces \(F^s_{X,q}(\Omega )\) for any \(s\in (0,1)\) and \(q\in (0,\infty )\) and prove that \(\Omega \) is an \(F^s_{X,q}(\Omega )\)-extension domain if and only if \(\Omega \) satisfies the measure density condition. The authors also establish the Sobolev embedding about \(F^s_{X,q}(\Omega )\) with an extra mild assumption, that is, X satisfies the extra \(\beta \)-doubling condition. These extension results when X is the Lebesgue space coincide with the known best ones of the fractional Sobolev space and the Triebel–Lizorkin space. Moreover, all these results have a wide range of applications and, particularly, even when they are applied, respectively, to weighted Lebesgue spaces, Morrey spaces, variable Lebesgue spaces, Orlicz spaces, Orlicz-slice spaces, mixed-norm Lebesgue spaces, and Lorentz spaces, the obtained results are also new. The main novelty of this article exists in that the authors use the boundedness of the Hardy–Littlewood maximal operator and the extrapolation about X to overcome those essential difficulties caused by the deficiency of the explicit expression of the norm of X.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信