{"title":"关于沿切线曲线几乎处处收敛于薛定谔方程初始基的说明","authors":"Javier Minguillón","doi":"10.1007/s12220-024-01755-x","DOIUrl":null,"url":null,"abstract":"<p>In this short note, we give an easy proof of the following result: for <span>\\( n\\ge 2, \\)</span> <span>\\(\\underset{t\\rightarrow 0}{\\lim }\\ \\,e^{it\\Delta }f\\left( x+\\gamma (t)\\right) = f(x) \\)</span> almost everywhere whenever <span>\\( \\gamma \\)</span> is an <span>\\( \\alpha \\)</span>-Hölder curve with <span>\\( \\frac{1}{2}\\le \\alpha \\le 1 \\)</span> and <span>\\( f\\in H^s({\\mathbb {R}}^n) \\)</span>, with <span>\\( s > \\frac{n}{2(n+1)} \\)</span>. This is the optimal range of regularity up to the endpoint.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Almost Everywhere Convergence Along Tangential Curves to the Schrödinger Equation Initial Datum\",\"authors\":\"Javier Minguillón\",\"doi\":\"10.1007/s12220-024-01755-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this short note, we give an easy proof of the following result: for <span>\\\\( n\\\\ge 2, \\\\)</span> <span>\\\\(\\\\underset{t\\\\rightarrow 0}{\\\\lim }\\\\ \\\\,e^{it\\\\Delta }f\\\\left( x+\\\\gamma (t)\\\\right) = f(x) \\\\)</span> almost everywhere whenever <span>\\\\( \\\\gamma \\\\)</span> is an <span>\\\\( \\\\alpha \\\\)</span>-Hölder curve with <span>\\\\( \\\\frac{1}{2}\\\\le \\\\alpha \\\\le 1 \\\\)</span> and <span>\\\\( f\\\\in H^s({\\\\mathbb {R}}^n) \\\\)</span>, with <span>\\\\( s > \\\\frac{n}{2(n+1)} \\\\)</span>. This is the optimal range of regularity up to the endpoint.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01755-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01755-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Note on Almost Everywhere Convergence Along Tangential Curves to the Schrödinger Equation Initial Datum
In this short note, we give an easy proof of the following result: for \( n\ge 2, \)\(\underset{t\rightarrow 0}{\lim }\ \,e^{it\Delta }f\left( x+\gamma (t)\right) = f(x) \) almost everywhere whenever \( \gamma \) is an \( \alpha \)-Hölder curve with \( \frac{1}{2}\le \alpha \le 1 \) and \( f\in H^s({\mathbb {R}}^n) \), with \( s > \frac{n}{2(n+1)} \). This is the optimal range of regularity up to the endpoint.