标量暗能量模型和标量张量引力:当前宇宙加速膨胀的理论解释

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Peixiang Ji, Lijing Shao
{"title":"标量暗能量模型和标量张量引力:当前宇宙加速膨胀的理论解释","authors":"Peixiang Ji, Lijing Shao","doi":"10.1088/1572-9494/ad5aeb","DOIUrl":null,"url":null,"abstract":"The reason for the present accelerated expansion of the Universe stands as one of the most profound questions in the realm of science, with deep connections to both cosmology and fundamental physics. From a cosmological point of view, physical models aimed at elucidating the observed expansion can be categorized into two major classes: dark energy and modified gravity. We review various major approaches that employ a single scalar field to account for the accelerating phase of our present Universe. Dynamic system analysis was employed in several important models to find cosmological solutions that exhibit an accelerating phase as an attractor. For scalar field models of dark energy, we consistently focused on addressing challenges related to the fine-tuning and coincidence problems in cosmology, as well as exploring potential solutions to them. For scalar–tensor theories and their generalizations, we emphasize the importance of constraints on theoretical parameters to ensure overall consistency with experimental tests. Models or theories that could potentially explain the Hubble tension are also emphasized throughout this review.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"68 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalar dark energy models and scalar–tensor gravity: theoretical explanations for the accelerated expansion of the present Universe\",\"authors\":\"Peixiang Ji, Lijing Shao\",\"doi\":\"10.1088/1572-9494/ad5aeb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reason for the present accelerated expansion of the Universe stands as one of the most profound questions in the realm of science, with deep connections to both cosmology and fundamental physics. From a cosmological point of view, physical models aimed at elucidating the observed expansion can be categorized into two major classes: dark energy and modified gravity. We review various major approaches that employ a single scalar field to account for the accelerating phase of our present Universe. Dynamic system analysis was employed in several important models to find cosmological solutions that exhibit an accelerating phase as an attractor. For scalar field models of dark energy, we consistently focused on addressing challenges related to the fine-tuning and coincidence problems in cosmology, as well as exploring potential solutions to them. For scalar–tensor theories and their generalizations, we emphasize the importance of constraints on theoretical parameters to ensure overall consistency with experimental tests. Models or theories that could potentially explain the Hubble tension are also emphasized throughout this review.\",\"PeriodicalId\":10641,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad5aeb\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad5aeb","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当前宇宙加速膨胀的原因是科学领域最深奥的问题之一,与宇宙学和基础物理学都有着深刻的联系。从宇宙学的角度来看,旨在阐明观测到的宇宙膨胀的物理模型可分为两大类:暗能量和修正引力。我们回顾了采用单一标量场来解释当前宇宙加速阶段的各种主要方法。我们在几个重要的模型中采用了动态系统分析,以找到以加速阶段为吸引子的宇宙学解。对于暗能量的标量场模型,我们始终专注于解决与宇宙学中的微调和巧合问题相关的挑战,以及探索解决这些问题的潜在方案。对于标量张量理论及其广义,我们强调理论参数约束的重要性,以确保与实验检验的整体一致性。本综述还强调了有可能解释哈勃张力的模型或理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalar dark energy models and scalar–tensor gravity: theoretical explanations for the accelerated expansion of the present Universe
The reason for the present accelerated expansion of the Universe stands as one of the most profound questions in the realm of science, with deep connections to both cosmology and fundamental physics. From a cosmological point of view, physical models aimed at elucidating the observed expansion can be categorized into two major classes: dark energy and modified gravity. We review various major approaches that employ a single scalar field to account for the accelerating phase of our present Universe. Dynamic system analysis was employed in several important models to find cosmological solutions that exhibit an accelerating phase as an attractor. For scalar field models of dark energy, we consistently focused on addressing challenges related to the fine-tuning and coincidence problems in cosmology, as well as exploring potential solutions to them. For scalar–tensor theories and their generalizations, we emphasize the importance of constraints on theoretical parameters to ensure overall consistency with experimental tests. Models or theories that could potentially explain the Hubble tension are also emphasized throughout this review.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Theoretical Physics
Communications in Theoretical Physics 物理-物理:综合
CiteScore
5.20
自引率
3.20%
发文量
6110
审稿时长
4.2 months
期刊介绍: Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of: mathematical physics quantum physics and quantum information particle physics and quantum field theory nuclear physics gravitation theory, astrophysics and cosmology atomic, molecular, optics (AMO) and plasma physics, chemical physics statistical physics, soft matter and biophysics condensed matter theory others Certain new interdisciplinary subjects are also incorporated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信