利用神经网络实现高精度实空间电子密度

Lixue Cheng, P. Bernát Szabó, Zeno Schätzle, Derk Kooi, Jonas Köhler, Klaas J. H. Giesbertz, Frank Noé, Jan Hermann, Paola Gori-Giorgi, Adam Foster
{"title":"利用神经网络实现高精度实空间电子密度","authors":"Lixue Cheng, P. Bernát Szabó, Zeno Schätzle, Derk Kooi, Jonas Köhler, Klaas J. H. Giesbertz, Frank Noé, Jan Hermann, Paola Gori-Giorgi, Adam Foster","doi":"arxiv-2409.01306","DOIUrl":null,"url":null,"abstract":"Variational ab-initio methods in quantum chemistry stand out among other\nmethods in providing direct access to the wave function. This allows in\nprinciple straightforward extraction of any other observable of interest,\nbesides the energy, but in practice this extraction is often technically\ndifficult and computationally impractical. Here, we consider the electron\ndensity as a central observable in quantum chemistry and introduce a novel\nmethod to obtain accurate densities from real-space many-electron wave\nfunctions by representing the density with a neural network that captures known\nasymptotic properties and is trained from the wave function by score matching\nand noise-contrastive estimation. We use variational quantum Monte Carlo with\ndeep-learning ans\\\"atze (deep QMC) to obtain highly accurate wave functions\nfree of basis set errors, and from them, using our novel method,\ncorrespondingly accurate electron densities, which we demonstrate by\ncalculating dipole moments, nuclear forces, contact densities, and other\ndensity-based properties.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Accurate Real-space Electron Densities with Neural Networks\",\"authors\":\"Lixue Cheng, P. Bernát Szabó, Zeno Schätzle, Derk Kooi, Jonas Köhler, Klaas J. H. Giesbertz, Frank Noé, Jan Hermann, Paola Gori-Giorgi, Adam Foster\",\"doi\":\"arxiv-2409.01306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variational ab-initio methods in quantum chemistry stand out among other\\nmethods in providing direct access to the wave function. This allows in\\nprinciple straightforward extraction of any other observable of interest,\\nbesides the energy, but in practice this extraction is often technically\\ndifficult and computationally impractical. Here, we consider the electron\\ndensity as a central observable in quantum chemistry and introduce a novel\\nmethod to obtain accurate densities from real-space many-electron wave\\nfunctions by representing the density with a neural network that captures known\\nasymptotic properties and is trained from the wave function by score matching\\nand noise-contrastive estimation. We use variational quantum Monte Carlo with\\ndeep-learning ans\\\\\\\"atze (deep QMC) to obtain highly accurate wave functions\\nfree of basis set errors, and from them, using our novel method,\\ncorrespondingly accurate electron densities, which we demonstrate by\\ncalculating dipole moments, nuclear forces, contact densities, and other\\ndensity-based properties.\",\"PeriodicalId\":501304,\"journal\":{\"name\":\"arXiv - PHYS - Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子化学中的变分自证方法与其他方法不同,它可以直接获取波函数。这在原理上允许直接提取除能量之外的任何其他感兴趣的观测值,但在实践中,这种提取往往在技术上是困难的,在计算上也是不切实际的。在这里,我们将电子密度视为量子化学中的核心观测指标,并介绍了一种从实空多电子波函数中获得精确密度的新方法,即用神经网络来表示密度,该神经网络捕捉已知的渐近特性,并通过分数匹配和噪声对比估计从波函数中训练出来。我们使用具有深度学习能力的变分量子蒙特卡洛(deep QMC)来获得没有基集误差的高精度波函数,并使用我们的新方法从中获得相应的精确电子密度,我们通过计算偶极矩、核力、接触密度和其他基于密度的性质来证明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Accurate Real-space Electron Densities with Neural Networks
Variational ab-initio methods in quantum chemistry stand out among other methods in providing direct access to the wave function. This allows in principle straightforward extraction of any other observable of interest, besides the energy, but in practice this extraction is often technically difficult and computationally impractical. Here, we consider the electron density as a central observable in quantum chemistry and introduce a novel method to obtain accurate densities from real-space many-electron wave functions by representing the density with a neural network that captures known asymptotic properties and is trained from the wave function by score matching and noise-contrastive estimation. We use variational quantum Monte Carlo with deep-learning ans\"atze (deep QMC) to obtain highly accurate wave functions free of basis set errors, and from them, using our novel method, correspondingly accurate electron densities, which we demonstrate by calculating dipole moments, nuclear forces, contact densities, and other density-based properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信