公度量空间中的 BV 函数和非局部函数

Panu Lahti, Andrea Pinamonti, Xiaodan Zhou
{"title":"公度量空间中的 BV 函数和非局部函数","authors":"Panu Lahti, Andrea Pinamonti, Xiaodan Zhou","doi":"10.1007/s12220-024-01766-8","DOIUrl":null,"url":null,"abstract":"<p>We study the asymptotic behavior of three classes of nonlocal functionals in complete metric spaces equipped with a doubling measure and supporting a Poincaré inequality. We show that the limits of these nonlocal functionals are comparable to the total variation <span>\\(\\Vert Df\\Vert (\\Omega )\\)</span> or the Sobolev semi-norm <span>\\(\\int _\\Omega g_f^p\\, d\\mu \\)</span>, which extends Euclidean results to metric measure spaces. In contrast to the classical setting, we also give an example to show that the limits are not always equal to the corresponding total variation even for Lipschitz functions.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BV Functions and Nonlocal Functionals in Metric Measure Spaces\",\"authors\":\"Panu Lahti, Andrea Pinamonti, Xiaodan Zhou\",\"doi\":\"10.1007/s12220-024-01766-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the asymptotic behavior of three classes of nonlocal functionals in complete metric spaces equipped with a doubling measure and supporting a Poincaré inequality. We show that the limits of these nonlocal functionals are comparable to the total variation <span>\\\\(\\\\Vert Df\\\\Vert (\\\\Omega )\\\\)</span> or the Sobolev semi-norm <span>\\\\(\\\\int _\\\\Omega g_f^p\\\\, d\\\\mu \\\\)</span>, which extends Euclidean results to metric measure spaces. In contrast to the classical setting, we also give an example to show that the limits are not always equal to the corresponding total variation even for Lipschitz functions.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01766-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01766-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了完全度量空间中的三类非局部函数的渐近行为,它们都配备了加倍度量并支持泊恩卡雷不等式。我们证明了这些非局部函数的极限与总变分(\Vert Df\Vert (\Omega )\)或索博勒夫半规范(\int _\Omega g_f^p\, d\mu \)相当,后者将欧几里得结果扩展到了度量空间。与经典情形不同的是,我们还举了一个例子来说明,即使对于 Lipschitz 函数,极限也并不总是等于相应的总变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BV Functions and Nonlocal Functionals in Metric Measure Spaces

We study the asymptotic behavior of three classes of nonlocal functionals in complete metric spaces equipped with a doubling measure and supporting a Poincaré inequality. We show that the limits of these nonlocal functionals are comparable to the total variation \(\Vert Df\Vert (\Omega )\) or the Sobolev semi-norm \(\int _\Omega g_f^p\, d\mu \), which extends Euclidean results to metric measure spaces. In contrast to the classical setting, we also give an example to show that the limits are not always equal to the corresponding total variation even for Lipschitz functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信