各向异性亚历山德罗夫-芬切尔式不等式和熊-闵科夫斯基公式

Jinyu Gao, Guanghan Li
{"title":"各向异性亚历山德罗夫-芬切尔式不等式和熊-闵科夫斯基公式","authors":"Jinyu Gao, Guanghan Li","doi":"10.1007/s12220-024-01759-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce an anisotropic geometric quantity <span>\\(\\mathbb {W}_{p,q;k} \\)</span> which involves the weighted integral of <i>k</i>-th elementary symmetric function. We first show the monotonicity of <span>\\({\\mathbb {W}}_{p,1;k}\\)</span> and <span>\\({\\mathbb {W}}_{0,q;k}\\)</span> along a class of inverse anisotropic curvature flows, and then prove the generalization of anisotropic Alexandrov–Fenchel type inequalities. On the other hand, an extension of anisotropic Hsiung–Minkowski formula is derived. Therefore, we at last obtain an extension of the Alexandrov–Fenchel type inequality, which involve the general <span>\\(\\mathbb {W}_{p,q;k}\\)</span>. In terms of the above inequalities, we have also demonstrated some other meaningful conclusions on convex body geometry, such as generalized <span>\\(L^p\\)</span>-Minkowski inequality and estimates of anisotropic <i>p</i>-affine surface area.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Alexandrov–Fenchel Type Inequalities and Hsiung–Minkowski Formula\",\"authors\":\"Jinyu Gao, Guanghan Li\",\"doi\":\"10.1007/s12220-024-01759-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce an anisotropic geometric quantity <span>\\\\(\\\\mathbb {W}_{p,q;k} \\\\)</span> which involves the weighted integral of <i>k</i>-th elementary symmetric function. We first show the monotonicity of <span>\\\\({\\\\mathbb {W}}_{p,1;k}\\\\)</span> and <span>\\\\({\\\\mathbb {W}}_{0,q;k}\\\\)</span> along a class of inverse anisotropic curvature flows, and then prove the generalization of anisotropic Alexandrov–Fenchel type inequalities. On the other hand, an extension of anisotropic Hsiung–Minkowski formula is derived. Therefore, we at last obtain an extension of the Alexandrov–Fenchel type inequality, which involve the general <span>\\\\(\\\\mathbb {W}_{p,q;k}\\\\)</span>. In terms of the above inequalities, we have also demonstrated some other meaningful conclusions on convex body geometry, such as generalized <span>\\\\(L^p\\\\)</span>-Minkowski inequality and estimates of anisotropic <i>p</i>-affine surface area.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01759-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01759-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一个各向异性的几何量 \(\mathbb {W}_{p,q;k} \),它涉及 k 次基本对称函数的加权积分。我们首先证明了 \({\mathbb {W}}_{p,1;k}\) 和 \({\mathbb {W}}_{0,q;k}\) 沿着一类反各向异性曲率流的单调性,然后证明了各向异性亚历山德罗夫-芬切尔式不等式的广义化。另一方面,推导了各向异性熊-闵科夫斯基公式的扩展。因此,我们最终得到了亚历山德罗夫-芬克尔式不等式的扩展,它涉及一般的 \(\mathbb {W}_{p,q;k}\).根据上述不等式,我们还证明了其他一些关于凸体几何的有意义的结论,如广义的 \(L^p\)-Minkowski 不等式和各向异性 p-affine 表面积的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropic Alexandrov–Fenchel Type Inequalities and Hsiung–Minkowski Formula

In this paper, we introduce an anisotropic geometric quantity \(\mathbb {W}_{p,q;k} \) which involves the weighted integral of k-th elementary symmetric function. We first show the monotonicity of \({\mathbb {W}}_{p,1;k}\) and \({\mathbb {W}}_{0,q;k}\) along a class of inverse anisotropic curvature flows, and then prove the generalization of anisotropic Alexandrov–Fenchel type inequalities. On the other hand, an extension of anisotropic Hsiung–Minkowski formula is derived. Therefore, we at last obtain an extension of the Alexandrov–Fenchel type inequality, which involve the general \(\mathbb {W}_{p,q;k}\). In terms of the above inequalities, we have also demonstrated some other meaningful conclusions on convex body geometry, such as generalized \(L^p\)-Minkowski inequality and estimates of anisotropic p-affine surface area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信