{"title":"具有双重势能的超临界分数薛定谔方程的大能量气泡解决方案","authors":"Ting Liu","doi":"10.1007/s12220-024-01769-5","DOIUrl":null,"url":null,"abstract":"<p>We consider the following supercritical fractional Schrödinger equation: </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} (-\\Delta )^s u + V(y) u=Q(y)u^{2_s^*-1+\\varepsilon }, \\;u>0, &{}\\hbox { in } {\\mathbb {R}}^{N},\\\\ u \\in D^s( {\\mathbb {R}}^{N}), \\end{array}\\right. } \\end{aligned}$$</span>(*)<p>where <span>\\(2_s^*=\\frac{2N}{N-2s},\\; N> 4s\\)</span>, <span>\\(0< s < 1\\)</span>, <span>\\((y',y'') \\in {\\mathbb {R}}^{2} \\times {\\mathbb {R}}^{N-2}\\)</span>, <span>\\(V(y) = V(|y'|,y'')\\)</span> and <span>\\(Q(y) = Q(|y'|,y'') \\not \\equiv 0\\)</span> are two bounded non-negative functions. Under some suitable assumptions on the potentials <i>V</i> and <i>Q</i>, we will use the finite-dimensional reduction argument and some local Pohozaev type identities to prove that for <span>\\(\\varepsilon > 0\\)</span> small enough, the problem <span>\\((*)\\)</span> has a large number of bubble solutions whose functional energy is in the order <span>\\(\\varepsilon ^{-\\frac{N-4s}{(N-2s)^2}}.\\)</span>\n</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Energy Bubble Solutions for Supercritical Fractional Schrödinger Equation with Double Potentials\",\"authors\":\"Ting Liu\",\"doi\":\"10.1007/s12220-024-01769-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the following supercritical fractional Schrödinger equation: </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} (-\\\\Delta )^s u + V(y) u=Q(y)u^{2_s^*-1+\\\\varepsilon }, \\\\;u>0, &{}\\\\hbox { in } {\\\\mathbb {R}}^{N},\\\\\\\\ u \\\\in D^s( {\\\\mathbb {R}}^{N}), \\\\end{array}\\\\right. } \\\\end{aligned}$$</span>(*)<p>where <span>\\\\(2_s^*=\\\\frac{2N}{N-2s},\\\\; N> 4s\\\\)</span>, <span>\\\\(0< s < 1\\\\)</span>, <span>\\\\((y',y'') \\\\in {\\\\mathbb {R}}^{2} \\\\times {\\\\mathbb {R}}^{N-2}\\\\)</span>, <span>\\\\(V(y) = V(|y'|,y'')\\\\)</span> and <span>\\\\(Q(y) = Q(|y'|,y'') \\\\not \\\\equiv 0\\\\)</span> are two bounded non-negative functions. Under some suitable assumptions on the potentials <i>V</i> and <i>Q</i>, we will use the finite-dimensional reduction argument and some local Pohozaev type identities to prove that for <span>\\\\(\\\\varepsilon > 0\\\\)</span> small enough, the problem <span>\\\\((*)\\\\)</span> has a large number of bubble solutions whose functional energy is in the order <span>\\\\(\\\\varepsilon ^{-\\\\frac{N-4s}{(N-2s)^2}}.\\\\)</span>\\n</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01769-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01769-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
We consider the following supercritical fractional Schrödinger equation: $$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s u + V(y) u=Q(y)u^{2_s^*-1+\varepsilon }, \;u>0, &{}\hbox { in }.{\mathbb {R}}^{N},\u \in D^s( {\mathbb {R}}^{N}),\end{array}\right.}\end{aligned}$$(*)where \(2_s^*=\frac{2N}{N-2s},\; N> 4s\),\(0< s < 1\),\((y',y'')\in {\mathbb {R}}^{2}\times {\mathbb {R}}^{N-2}\), (V(y) = V(|y'|,y''))和(Q(y) = Q(|y'|,y'') (not \equiv 0\) 是两个有界的非负函数。在电势 V 和 Q 的一些合适假设下,我们将使用有限维还原论证和一些局部 Pohozaev 类型的等式来证明,对于 \(\varepsilon > 0\) 足够小,问题 \((*)\) 有大量的气泡解,其函数能量在 \(\varepsilon ^{-\frac{N-4s}{(N-2s)^2}}.\) 的数量级上。
Large Energy Bubble Solutions for Supercritical Fractional Schrödinger Equation with Double Potentials
We consider the following supercritical fractional Schrödinger equation:
$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s u + V(y) u=Q(y)u^{2_s^*-1+\varepsilon }, \;u>0, &{}\hbox { in } {\mathbb {R}}^{N},\\ u \in D^s( {\mathbb {R}}^{N}), \end{array}\right. } \end{aligned}$$(*)
where \(2_s^*=\frac{2N}{N-2s},\; N> 4s\), \(0< s < 1\), \((y',y'') \in {\mathbb {R}}^{2} \times {\mathbb {R}}^{N-2}\), \(V(y) = V(|y'|,y'')\) and \(Q(y) = Q(|y'|,y'') \not \equiv 0\) are two bounded non-negative functions. Under some suitable assumptions on the potentials V and Q, we will use the finite-dimensional reduction argument and some local Pohozaev type identities to prove that for \(\varepsilon > 0\) small enough, the problem \((*)\) has a large number of bubble solutions whose functional energy is in the order \(\varepsilon ^{-\frac{N-4s}{(N-2s)^2}}.\)