{"title":"球和球上几乎标准度量的最小网络","authors":"Luciano Sciaraffia","doi":"10.1007/s12220-024-01765-9","DOIUrl":null,"url":null,"abstract":"<p>We study the existence of minimal networks in the unit sphere <span>\\({\\textbf{S}}^d\\)</span> and the unit ball <span>\\({\\textbf{B}}^d\\)</span> of <span>\\({\\textbf{R}}^d\\)</span> endowed with Riemannian metrics close to the standard ones. We employ a finite-dimensional reduction method, modelled on the configuration of <span>\\(\\theta \\)</span>-networks in <span>\\({\\textbf{S}}^d\\)</span> and triods in <span>\\({\\textbf{B}}^d\\)</span>, jointly with the Lusternik–Schnirelmann category.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal Networks on Balls and Spheres for Almost Standard Metrics\",\"authors\":\"Luciano Sciaraffia\",\"doi\":\"10.1007/s12220-024-01765-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the existence of minimal networks in the unit sphere <span>\\\\({\\\\textbf{S}}^d\\\\)</span> and the unit ball <span>\\\\({\\\\textbf{B}}^d\\\\)</span> of <span>\\\\({\\\\textbf{R}}^d\\\\)</span> endowed with Riemannian metrics close to the standard ones. We employ a finite-dimensional reduction method, modelled on the configuration of <span>\\\\(\\\\theta \\\\)</span>-networks in <span>\\\\({\\\\textbf{S}}^d\\\\)</span> and triods in <span>\\\\({\\\\textbf{B}}^d\\\\)</span>, jointly with the Lusternik–Schnirelmann category.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01765-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01765-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimal Networks on Balls and Spheres for Almost Standard Metrics
We study the existence of minimal networks in the unit sphere \({\textbf{S}}^d\) and the unit ball \({\textbf{B}}^d\) of \({\textbf{R}}^d\) endowed with Riemannian metrics close to the standard ones. We employ a finite-dimensional reduction method, modelled on the configuration of \(\theta \)-networks in \({\textbf{S}}^d\) and triods in \({\textbf{B}}^d\), jointly with the Lusternik–Schnirelmann category.