球和球上几乎标准度量的最小网络

Luciano Sciaraffia
{"title":"球和球上几乎标准度量的最小网络","authors":"Luciano Sciaraffia","doi":"10.1007/s12220-024-01765-9","DOIUrl":null,"url":null,"abstract":"<p>We study the existence of minimal networks in the unit sphere <span>\\({\\textbf{S}}^d\\)</span> and the unit ball <span>\\({\\textbf{B}}^d\\)</span> of <span>\\({\\textbf{R}}^d\\)</span> endowed with Riemannian metrics close to the standard ones. We employ a finite-dimensional reduction method, modelled on the configuration of <span>\\(\\theta \\)</span>-networks in <span>\\({\\textbf{S}}^d\\)</span> and triods in <span>\\({\\textbf{B}}^d\\)</span>, jointly with the Lusternik–Schnirelmann category.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal Networks on Balls and Spheres for Almost Standard Metrics\",\"authors\":\"Luciano Sciaraffia\",\"doi\":\"10.1007/s12220-024-01765-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the existence of minimal networks in the unit sphere <span>\\\\({\\\\textbf{S}}^d\\\\)</span> and the unit ball <span>\\\\({\\\\textbf{B}}^d\\\\)</span> of <span>\\\\({\\\\textbf{R}}^d\\\\)</span> endowed with Riemannian metrics close to the standard ones. We employ a finite-dimensional reduction method, modelled on the configuration of <span>\\\\(\\\\theta \\\\)</span>-networks in <span>\\\\({\\\\textbf{S}}^d\\\\)</span> and triods in <span>\\\\({\\\\textbf{B}}^d\\\\)</span>, jointly with the Lusternik–Schnirelmann category.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01765-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01765-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了单位球({\textbf{S}}^d\)和单位球({\textbf{B}}^d\)中存在的最小网络,这些网络被赋予了接近标准的黎曼度量。我们采用了一种有限维还原方法,它以\({\textbf{S}}^d\)中的\(\theta \)-networks和\({\textbf{B}}^d\)中的triods的配置为模型,并与Lusternik-Schnirelmann范畴相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Minimal Networks on Balls and Spheres for Almost Standard Metrics

Minimal Networks on Balls and Spheres for Almost Standard Metrics

We study the existence of minimal networks in the unit sphere \({\textbf{S}}^d\) and the unit ball \({\textbf{B}}^d\) of \({\textbf{R}}^d\) endowed with Riemannian metrics close to the standard ones. We employ a finite-dimensional reduction method, modelled on the configuration of \(\theta \)-networks in \({\textbf{S}}^d\) and triods in \({\textbf{B}}^d\), jointly with the Lusternik–Schnirelmann category.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信