{"title":"具有指数临界增长的 $${mathbb {R}}^N$ 中 N 拉普拉斯方程的归一化解","authors":"Jingbo Dou, Ling Huang, Xuexiu Zhong","doi":"10.1007/s12220-024-01771-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with normalized solutions <span>\\((u,\\lambda )\\in W^{1,N}(\\mathbb {R}^N)\\times \\mathbb {R}^+\\)</span> to the following <i>N</i>-Laplacian problem </p><span>$$\\begin{aligned} -{\\text {div}}(|\\nabla u|^{N-2} \\nabla u)+\\lambda |u|^{N-2} u=f(u) \\text{ in } \\mathbb {R}^N,~N \\ge 2, \\end{aligned}$$</span><p>satisfying the normalization constraint <span>\\(\\int _{\\mathbb {R}^N}|u|^N\\textrm{d}x=c^N\\)</span>. The nonlinearity <i>f</i>(<i>s</i>) is an exponential critical growth function, i.e., behaves like <span>\\(\\exp (\\alpha |s|^{N /(N-1)})\\)</span> for some <span>\\(\\alpha >0\\)</span> as <span>\\(|s| \\rightarrow \\infty \\)</span>. Under some mild conditions, we show the existence of normalized mountain pass type solution via the variational method. We also emphasize the normalized ground state solution has a mountain pass characterization under some further assumption. Our existence results in present paper also solve a Soave’s type open problem (J Funct Anal 279(6):108610, 2020) on the nonlinearities having an exponential critical growth.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized Solutions to N-Laplacian Equations in $${\\\\mathbb {R}}^N$$ with Exponential Critical Growth\",\"authors\":\"Jingbo Dou, Ling Huang, Xuexiu Zhong\",\"doi\":\"10.1007/s12220-024-01771-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we are concerned with normalized solutions <span>\\\\((u,\\\\lambda )\\\\in W^{1,N}(\\\\mathbb {R}^N)\\\\times \\\\mathbb {R}^+\\\\)</span> to the following <i>N</i>-Laplacian problem </p><span>$$\\\\begin{aligned} -{\\\\text {div}}(|\\\\nabla u|^{N-2} \\\\nabla u)+\\\\lambda |u|^{N-2} u=f(u) \\\\text{ in } \\\\mathbb {R}^N,~N \\\\ge 2, \\\\end{aligned}$$</span><p>satisfying the normalization constraint <span>\\\\(\\\\int _{\\\\mathbb {R}^N}|u|^N\\\\textrm{d}x=c^N\\\\)</span>. The nonlinearity <i>f</i>(<i>s</i>) is an exponential critical growth function, i.e., behaves like <span>\\\\(\\\\exp (\\\\alpha |s|^{N /(N-1)})\\\\)</span> for some <span>\\\\(\\\\alpha >0\\\\)</span> as <span>\\\\(|s| \\\\rightarrow \\\\infty \\\\)</span>. Under some mild conditions, we show the existence of normalized mountain pass type solution via the variational method. We also emphasize the normalized ground state solution has a mountain pass characterization under some further assumption. Our existence results in present paper also solve a Soave’s type open problem (J Funct Anal 279(6):108610, 2020) on the nonlinearities having an exponential critical growth.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01771-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01771-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们关注的是 W^{1、N}(\mathbb {R}^N)\times \mathbb {R}^+\) 下面的 N 拉普拉斯问题 $$\begin{aligned} -\{text {div}}(|\nabla u|^{N-2} \nabla u)+\lambda |u|^{N-2} u=f(u) \text{ in }\mathbb {R}^N,~N \ge 2, \end{aligned}$满足归一化约束条件\(\int _{mathbb {R}^N}|u^N\textrm{d}x=c^N\).非线性 f(s) 是一个指数临界增长函数,即在某个 \(α >0\)条件下表现为 \(\exp (\α |s|^{N /(N-1)})\) as \(|s| \rightarrow \infty \)。在一些温和的条件下,我们通过变分法证明了归一化山口类型解的存在。我们还强调归一化基态解在一些进一步假设下具有山口特征。本文的存在性结果还解决了一个指数临界增长的非线性问题 Soave's type open problem (J Funct Anal 279(6):108610, 2020)。
Normalized Solutions to N-Laplacian Equations in $${\mathbb {R}}^N$$ with Exponential Critical Growth
In this paper, we are concerned with normalized solutions \((u,\lambda )\in W^{1,N}(\mathbb {R}^N)\times \mathbb {R}^+\) to the following N-Laplacian problem
satisfying the normalization constraint \(\int _{\mathbb {R}^N}|u|^N\textrm{d}x=c^N\). The nonlinearity f(s) is an exponential critical growth function, i.e., behaves like \(\exp (\alpha |s|^{N /(N-1)})\) for some \(\alpha >0\) as \(|s| \rightarrow \infty \). Under some mild conditions, we show the existence of normalized mountain pass type solution via the variational method. We also emphasize the normalized ground state solution has a mountain pass characterization under some further assumption. Our existence results in present paper also solve a Soave’s type open problem (J Funct Anal 279(6):108610, 2020) on the nonlinearities having an exponential critical growth.