{"title":"体积约束下的大斯特克洛夫特征值","authors":"Alexandre Girouard, Panagiotis Polymerakis","doi":"10.1007/s12220-024-01768-6","DOIUrl":null,"url":null,"abstract":"<p>In this note we establish an expression for the Steklov spectrum of warped products in terms of auxiliary Steklov problems for drift Laplacians with weight induced by the warping factor. As an application, we show that a compact manifold with connected boundary diffeomorphic to a product admits a family of Riemannian metrics which coincide on the boundary, have fixed volume and arbitrarily large first non-zero Steklov eigenvalue. These are the first examples of Riemannian metrics with these properties on three-dimensional manifolds.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Steklov Eigenvalues Under Volume Constraints\",\"authors\":\"Alexandre Girouard, Panagiotis Polymerakis\",\"doi\":\"10.1007/s12220-024-01768-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note we establish an expression for the Steklov spectrum of warped products in terms of auxiliary Steklov problems for drift Laplacians with weight induced by the warping factor. As an application, we show that a compact manifold with connected boundary diffeomorphic to a product admits a family of Riemannian metrics which coincide on the boundary, have fixed volume and arbitrarily large first non-zero Steklov eigenvalue. These are the first examples of Riemannian metrics with these properties on three-dimensional manifolds.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01768-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01768-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large Steklov Eigenvalues Under Volume Constraints
In this note we establish an expression for the Steklov spectrum of warped products in terms of auxiliary Steklov problems for drift Laplacians with weight induced by the warping factor. As an application, we show that a compact manifold with connected boundary diffeomorphic to a product admits a family of Riemannian metrics which coincide on the boundary, have fixed volume and arbitrarily large first non-zero Steklov eigenvalue. These are the first examples of Riemannian metrics with these properties on three-dimensional manifolds.