体积约束下的大斯特克洛夫特征值

Alexandre Girouard, Panagiotis Polymerakis
{"title":"体积约束下的大斯特克洛夫特征值","authors":"Alexandre Girouard, Panagiotis Polymerakis","doi":"10.1007/s12220-024-01768-6","DOIUrl":null,"url":null,"abstract":"<p>In this note we establish an expression for the Steklov spectrum of warped products in terms of auxiliary Steklov problems for drift Laplacians with weight induced by the warping factor. As an application, we show that a compact manifold with connected boundary diffeomorphic to a product admits a family of Riemannian metrics which coincide on the boundary, have fixed volume and arbitrarily large first non-zero Steklov eigenvalue. These are the first examples of Riemannian metrics with these properties on three-dimensional manifolds.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Steklov Eigenvalues Under Volume Constraints\",\"authors\":\"Alexandre Girouard, Panagiotis Polymerakis\",\"doi\":\"10.1007/s12220-024-01768-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note we establish an expression for the Steklov spectrum of warped products in terms of auxiliary Steklov problems for drift Laplacians with weight induced by the warping factor. As an application, we show that a compact manifold with connected boundary diffeomorphic to a product admits a family of Riemannian metrics which coincide on the boundary, have fixed volume and arbitrarily large first non-zero Steklov eigenvalue. These are the first examples of Riemannian metrics with these properties on three-dimensional manifolds.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01768-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01768-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们用漂移拉普拉斯的辅助斯特克洛夫问题建立了翘曲积的斯特克洛夫谱表达式,漂移拉普拉斯的权重由翘曲因子引起。作为应用,我们证明了一个具有与积相差形的连通边界的紧凑流形存在一族黎曼度量,它们在边界上重合,具有固定的体积和任意大的第一个非零斯特克洛夫特征值。这是三维流形上具有这些性质的黎曼度量的第一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Steklov Eigenvalues Under Volume Constraints

In this note we establish an expression for the Steklov spectrum of warped products in terms of auxiliary Steklov problems for drift Laplacians with weight induced by the warping factor. As an application, we show that a compact manifold with connected boundary diffeomorphic to a product admits a family of Riemannian metrics which coincide on the boundary, have fixed volume and arbitrarily large first non-zero Steklov eigenvalue. These are the first examples of Riemannian metrics with these properties on three-dimensional manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信