{"title":"超曲面上 CR 函数的拉多定理","authors":"S. Berhanu, Xiaoshan Li","doi":"10.1007/s12220-024-01763-x","DOIUrl":null,"url":null,"abstract":"<p>We prove a generalization of a well-known theorem of Rado for continuous CR functions on a class of bihololomorphically invariant hypersurfaces that are considerably larger than convex ones of finite type and strictly pseudoconvex hypersurfaces.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rado’s Theorem for CR Functions on Hypersurfaces\",\"authors\":\"S. Berhanu, Xiaoshan Li\",\"doi\":\"10.1007/s12220-024-01763-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a generalization of a well-known theorem of Rado for continuous CR functions on a class of bihololomorphically invariant hypersurfaces that are considerably larger than convex ones of finite type and strictly pseudoconvex hypersurfaces.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01763-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01763-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了 Rado 一个著名定理的广义化,该定理适用于一类比有限类型的凸超曲面和严格伪凸超曲面大得多的双霍洛变不变超曲面上的连续 CR 函数。
We prove a generalization of a well-known theorem of Rado for continuous CR functions on a class of bihololomorphically invariant hypersurfaces that are considerably larger than convex ones of finite type and strictly pseudoconvex hypersurfaces.