薄膜的稳定性

Bennett Palmer, Álvaro Pámpano
{"title":"薄膜的稳定性","authors":"Bennett Palmer, Álvaro Pámpano","doi":"10.1007/s12220-024-01767-7","DOIUrl":null,"url":null,"abstract":"<p>In Palmer and Pámpano (Calc Var Partial Differ Equ 61:79, 2022), the authors studied a particular class of equilibrium solutions of the Helfrich energy which satisfy a second order condition called the reduced membrane equation. In this paper we develop and apply a second variation formula for the Helfrich energy for this class of surfaces. The reduced membrane equation also arises as the Euler–Lagrange equation for the area of surfaces under the action of gravity in the three dimensional hyperbolic space. We study the second variation of this functional for a particular example.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of Membranes\",\"authors\":\"Bennett Palmer, Álvaro Pámpano\",\"doi\":\"10.1007/s12220-024-01767-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Palmer and Pámpano (Calc Var Partial Differ Equ 61:79, 2022), the authors studied a particular class of equilibrium solutions of the Helfrich energy which satisfy a second order condition called the reduced membrane equation. In this paper we develop and apply a second variation formula for the Helfrich energy for this class of surfaces. The reduced membrane equation also arises as the Euler–Lagrange equation for the area of surfaces under the action of gravity in the three dimensional hyperbolic space. We study the second variation of this functional for a particular example.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01767-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01767-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 Palmer 和 Pámpano (Calc Var Partial Differ Equ 61:79, 2022)一文中,作者研究了一类特殊的赫尔弗里希能平衡解,该平衡解满足二阶条件,被称为还原膜方程。在本文中,我们为这一类表面开发并应用了赫尔弗里希能的二阶变化公式。还原膜方程也是三维双曲空间中重力作用下曲面面积的欧拉-拉格朗日方程。我们以一个特定的例子来研究该函数的二次变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stability of Membranes

Stability of Membranes

In Palmer and Pámpano (Calc Var Partial Differ Equ 61:79, 2022), the authors studied a particular class of equilibrium solutions of the Helfrich energy which satisfy a second order condition called the reduced membrane equation. In this paper we develop and apply a second variation formula for the Helfrich energy for this class of surfaces. The reduced membrane equation also arises as the Euler–Lagrange equation for the area of surfaces under the action of gravity in the three dimensional hyperbolic space. We study the second variation of this functional for a particular example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信