一些紧凑赫尔墨斯漫场上的退化复蒙哥-安培方程

Omar Alehyane, Chinh H. Lu, Mohammed Salouf
{"title":"一些紧凑赫尔墨斯漫场上的退化复蒙哥-安培方程","authors":"Omar Alehyane, Chinh H. Lu, Mohammed Salouf","doi":"10.1007/s12220-024-01772-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a compact complex manifold which admits a hermitian metric satisfying a curvature condition introduced by Guan–Li. Given a semipositive form <span>\\(\\theta \\)</span> with positive volume, we define the Monge–Ampère operator for unbounded <span>\\(\\theta \\)</span>-psh functions and prove that it is continuous with respect to convergence in capacity. We then develop pluripotential tools to study degenerate complex Monge–Ampère equations in this context, extending recent results of Tosatti–Weinkove, Kolodziej–Nguyen, Guedj–Lu and many others who treat bounded solutions.\n</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerate Complex Monge–Ampère Equations on Some Compact Hermitian Manifolds\",\"authors\":\"Omar Alehyane, Chinh H. Lu, Mohammed Salouf\",\"doi\":\"10.1007/s12220-024-01772-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> be a compact complex manifold which admits a hermitian metric satisfying a curvature condition introduced by Guan–Li. Given a semipositive form <span>\\\\(\\\\theta \\\\)</span> with positive volume, we define the Monge–Ampère operator for unbounded <span>\\\\(\\\\theta \\\\)</span>-psh functions and prove that it is continuous with respect to convergence in capacity. We then develop pluripotential tools to study degenerate complex Monge–Ampère equations in this context, extending recent results of Tosatti–Weinkove, Kolodziej–Nguyen, Guedj–Lu and many others who treat bounded solutions.\\n</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01772-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01772-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 X 是一个紧凑的复流形,它接受一个满足关立提出的曲率条件的赫米特度量。给定一个具有正量的(\theta \)半正形式,我们定义了无界(\theta \)-psh函数的蒙日-安培算子,并证明它在容量收敛方面是连续的。然后,我们开发了在此背景下研究退化复杂 Monge-Ampère 方程的多能性工具,扩展了 Tosatti-Weinkove、Kolodziej-Nguyen、Guedj-Lu 和其他许多人处理有界解的最新成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degenerate Complex Monge–Ampère Equations on Some Compact Hermitian Manifolds

Let X be a compact complex manifold which admits a hermitian metric satisfying a curvature condition introduced by Guan–Li. Given a semipositive form \(\theta \) with positive volume, we define the Monge–Ampère operator for unbounded \(\theta \)-psh functions and prove that it is continuous with respect to convergence in capacity. We then develop pluripotential tools to study degenerate complex Monge–Ampère equations in this context, extending recent results of Tosatti–Weinkove, Kolodziej–Nguyen, Guedj–Lu and many others who treat bounded solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信