{"title":"一些紧凑赫尔墨斯漫场上的退化复蒙哥-安培方程","authors":"Omar Alehyane, Chinh H. Lu, Mohammed Salouf","doi":"10.1007/s12220-024-01772-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a compact complex manifold which admits a hermitian metric satisfying a curvature condition introduced by Guan–Li. Given a semipositive form <span>\\(\\theta \\)</span> with positive volume, we define the Monge–Ampère operator for unbounded <span>\\(\\theta \\)</span>-psh functions and prove that it is continuous with respect to convergence in capacity. We then develop pluripotential tools to study degenerate complex Monge–Ampère equations in this context, extending recent results of Tosatti–Weinkove, Kolodziej–Nguyen, Guedj–Lu and many others who treat bounded solutions.\n</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerate Complex Monge–Ampère Equations on Some Compact Hermitian Manifolds\",\"authors\":\"Omar Alehyane, Chinh H. Lu, Mohammed Salouf\",\"doi\":\"10.1007/s12220-024-01772-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> be a compact complex manifold which admits a hermitian metric satisfying a curvature condition introduced by Guan–Li. Given a semipositive form <span>\\\\(\\\\theta \\\\)</span> with positive volume, we define the Monge–Ampère operator for unbounded <span>\\\\(\\\\theta \\\\)</span>-psh functions and prove that it is continuous with respect to convergence in capacity. We then develop pluripotential tools to study degenerate complex Monge–Ampère equations in this context, extending recent results of Tosatti–Weinkove, Kolodziej–Nguyen, Guedj–Lu and many others who treat bounded solutions.\\n</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01772-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01772-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 X 是一个紧凑的复流形,它接受一个满足关立提出的曲率条件的赫米特度量。给定一个具有正量的(\theta \)半正形式,我们定义了无界(\theta \)-psh函数的蒙日-安培算子,并证明它在容量收敛方面是连续的。然后,我们开发了在此背景下研究退化复杂 Monge-Ampère 方程的多能性工具,扩展了 Tosatti-Weinkove、Kolodziej-Nguyen、Guedj-Lu 和其他许多人处理有界解的最新成果。
Degenerate Complex Monge–Ampère Equations on Some Compact Hermitian Manifolds
Let X be a compact complex manifold which admits a hermitian metric satisfying a curvature condition introduced by Guan–Li. Given a semipositive form \(\theta \) with positive volume, we define the Monge–Ampère operator for unbounded \(\theta \)-psh functions and prove that it is continuous with respect to convergence in capacity. We then develop pluripotential tools to study degenerate complex Monge–Ampère equations in this context, extending recent results of Tosatti–Weinkove, Kolodziej–Nguyen, Guedj–Lu and many others who treat bounded solutions.