论沿二次超曲面的多项式卡莱森算子

Theresa C. Anderson, Dominique Maldague, Lillian B. Pierce, Po-Lam Yung
{"title":"论沿二次超曲面的多项式卡莱森算子","authors":"Theresa C. Anderson, Dominique Maldague, Lillian B. Pierce, Po-Lam Yung","doi":"10.1007/s12220-024-01676-9","DOIUrl":null,"url":null,"abstract":"<p>We prove that a maximally modulated singular oscillatory integral operator along a hypersurface defined by <span>\\((y,Q(y))\\subseteq \\mathbb {R}^{n+1}\\)</span>, for an arbitrary non-degenerate quadratic form <i>Q</i>, admits an <i>a priori</i> bound on <span>\\(L^p\\)</span> for all <span>\\(1&lt;p&lt;\\infty \\)</span>, for each <span>\\(n \\ge 2\\)</span>. This operator takes the form of a polynomial Carleson operator of Radon-type, in which the maximally modulated phases lie in the real span of <span>\\(\\{p_2,\\ldots ,p_d\\}\\)</span> for any set of fixed real-valued polynomials <span>\\(p_j\\)</span> such that <span>\\(p_j\\)</span> is homogeneous of degree <i>j</i>, and <span>\\(p_2\\)</span> is not a multiple of <i>Q</i>(<i>y</i>). The general method developed in this work applies to quadratic forms of arbitrary signature, while previous work considered only the special positive definite case <span>\\(Q(y)=|y|^2\\)</span>.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Polynomial Carleson Operators Along Quadratic Hypersurfaces\",\"authors\":\"Theresa C. Anderson, Dominique Maldague, Lillian B. Pierce, Po-Lam Yung\",\"doi\":\"10.1007/s12220-024-01676-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that a maximally modulated singular oscillatory integral operator along a hypersurface defined by <span>\\\\((y,Q(y))\\\\subseteq \\\\mathbb {R}^{n+1}\\\\)</span>, for an arbitrary non-degenerate quadratic form <i>Q</i>, admits an <i>a priori</i> bound on <span>\\\\(L^p\\\\)</span> for all <span>\\\\(1&lt;p&lt;\\\\infty \\\\)</span>, for each <span>\\\\(n \\\\ge 2\\\\)</span>. This operator takes the form of a polynomial Carleson operator of Radon-type, in which the maximally modulated phases lie in the real span of <span>\\\\(\\\\{p_2,\\\\ldots ,p_d\\\\}\\\\)</span> for any set of fixed real-valued polynomials <span>\\\\(p_j\\\\)</span> such that <span>\\\\(p_j\\\\)</span> is homogeneous of degree <i>j</i>, and <span>\\\\(p_2\\\\)</span> is not a multiple of <i>Q</i>(<i>y</i>). The general method developed in this work applies to quadratic forms of arbitrary signature, while previous work considered only the special positive definite case <span>\\\\(Q(y)=|y|^2\\\\)</span>.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01676-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01676-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于任意非退化二次型 Q,沿着由 \((y,Q(y))\subseteq \mathbb {R}^{n+1}\) 定义的超曲面的最大调制奇异振荡积分算子,对于所有 \(1<p<\infty \),对于每一个 \(n \ge 2\) ,在 \(L^p\) 上都有一个先验约束。对于任意一组固定的实值多项式\(p_j\),其中\(p_j\)是j度的同次多项式,并且\(p_2\)不是Q(y)的倍数,该算子采用Radon型多项式卡列松算子的形式,其中最大调制相位位于\(\{p_2,\ldots ,p_d\}\)的实跨中。这项工作中开发的一般方法适用于任意签名的二次型,而之前的工作只考虑了特殊的正定情况 \(Q(y)=|y|^2\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Polynomial Carleson Operators Along Quadratic Hypersurfaces

We prove that a maximally modulated singular oscillatory integral operator along a hypersurface defined by \((y,Q(y))\subseteq \mathbb {R}^{n+1}\), for an arbitrary non-degenerate quadratic form Q, admits an a priori bound on \(L^p\) for all \(1<p<\infty \), for each \(n \ge 2\). This operator takes the form of a polynomial Carleson operator of Radon-type, in which the maximally modulated phases lie in the real span of \(\{p_2,\ldots ,p_d\}\) for any set of fixed real-valued polynomials \(p_j\) such that \(p_j\) is homogeneous of degree j, and \(p_2\) is not a multiple of Q(y). The general method developed in this work applies to quadratic forms of arbitrary signature, while previous work considered only the special positive definite case \(Q(y)=|y|^2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信