至少质量临界问题的归一化解:奇异多谐方程及相关的曲线-曲线问题

Bartosz Bieganowski, Jarosław Mederski, Jacopo Schino
{"title":"至少质量临界问题的归一化解:奇异多谐方程及相关的曲线-曲线问题","authors":"Bartosz Bieganowski, Jarosław Mederski, Jacopo Schino","doi":"10.1007/s12220-024-01770-y","DOIUrl":null,"url":null,"abstract":"<p>We are interested in the existence of normalized solutions to the problem </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} (-\\Delta )^m u+\\frac{\\mu }{|y|^{2m}}u + \\lambda u = g(u), \\quad x = (y,z) \\in \\mathbb {R}^K \\times \\mathbb {R}^{N-K}, \\\\ \\int _{\\mathbb {R}^N} |u|^2 \\, dx = \\rho &gt; 0, \\end{array}\\right. } \\end{aligned}$$</span><p>in the so-called at least mass critical regime. We utilize recently introduced variational techniques involving the minimization on the <span>\\(L^2\\)</span>-ball. Moreover, we find also a solution to the related curl–curl problem </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} \\nabla \\times \\nabla \\times \\textbf{U}+\\lambda \\textbf{U}=f(\\textbf{U}), \\quad x \\in \\mathbb {R}^N,\\\\ \\int _{\\mathbb {R}^N}|\\textbf{U}|^2\\,dx=\\rho ,\\\\ \\end{array}\\right. } \\end{aligned}$$</span><p>which arises from the system of Maxwell equations and is of great importance in nonlinear optics.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized Solutions to at Least Mass Critical Problems: Singular Polyharmonic Equations and Related Curl–Curl Problems\",\"authors\":\"Bartosz Bieganowski, Jarosław Mederski, Jacopo Schino\",\"doi\":\"10.1007/s12220-024-01770-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are interested in the existence of normalized solutions to the problem </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} (-\\\\Delta )^m u+\\\\frac{\\\\mu }{|y|^{2m}}u + \\\\lambda u = g(u), \\\\quad x = (y,z) \\\\in \\\\mathbb {R}^K \\\\times \\\\mathbb {R}^{N-K}, \\\\\\\\ \\\\int _{\\\\mathbb {R}^N} |u|^2 \\\\, dx = \\\\rho &gt; 0, \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>in the so-called at least mass critical regime. We utilize recently introduced variational techniques involving the minimization on the <span>\\\\(L^2\\\\)</span>-ball. Moreover, we find also a solution to the related curl–curl problem </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} \\\\nabla \\\\times \\\\nabla \\\\times \\\\textbf{U}+\\\\lambda \\\\textbf{U}=f(\\\\textbf{U}), \\\\quad x \\\\in \\\\mathbb {R}^N,\\\\\\\\ \\\\int _{\\\\mathbb {R}^N}|\\\\textbf{U}|^2\\\\,dx=\\\\rho ,\\\\\\\\ \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>which arises from the system of Maxwell equations and is of great importance in nonlinear optics.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01770-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01770-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对问题 $$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^m u+\frac{mu }{|y|^{2m}}u + \lambda u = g(u) 的归一化解的存在性很感兴趣、\quad x = (y,z) in \mathbb {R}^K \times \mathbb {R}^{N-K}, \int _\{mathbb {R}^N}.|u|^2 \, dx = \rho > 0, \end{array}\right.}\end{aligned}$$ in the so-called at least mass critical regime.我们利用了最近引入的涉及在 \(L^2\)-ball 上最小化的变分技术。此外,我们还找到了相关的卷曲问题 $$\begin{aligned} {\left\{ \begin{array}{ll} 的解。\nabla \times \times \textbf{U}+\lambda \textbf{U}=f(\textbf{U}), \quad x \in \mathbb {R}^N,\int _\mathbb {R}^N}|\textbf{U}|^2\,dx=\rho ,\\end{array}\right.}\end{aligned}$$源于麦克斯韦方程组,在非线性光学中非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized Solutions to at Least Mass Critical Problems: Singular Polyharmonic Equations and Related Curl–Curl Problems

We are interested in the existence of normalized solutions to the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^m u+\frac{\mu }{|y|^{2m}}u + \lambda u = g(u), \quad x = (y,z) \in \mathbb {R}^K \times \mathbb {R}^{N-K}, \\ \int _{\mathbb {R}^N} |u|^2 \, dx = \rho > 0, \end{array}\right. } \end{aligned}$$

in the so-called at least mass critical regime. We utilize recently introduced variational techniques involving the minimization on the \(L^2\)-ball. Moreover, we find also a solution to the related curl–curl problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \nabla \times \nabla \times \textbf{U}+\lambda \textbf{U}=f(\textbf{U}), \quad x \in \mathbb {R}^N,\\ \int _{\mathbb {R}^N}|\textbf{U}|^2\,dx=\rho ,\\ \end{array}\right. } \end{aligned}$$

which arises from the system of Maxwell equations and is of great importance in nonlinear optics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信