{"title":"至少质量临界问题的归一化解:奇异多谐方程及相关的曲线-曲线问题","authors":"Bartosz Bieganowski, Jarosław Mederski, Jacopo Schino","doi":"10.1007/s12220-024-01770-y","DOIUrl":null,"url":null,"abstract":"<p>We are interested in the existence of normalized solutions to the problem </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} (-\\Delta )^m u+\\frac{\\mu }{|y|^{2m}}u + \\lambda u = g(u), \\quad x = (y,z) \\in \\mathbb {R}^K \\times \\mathbb {R}^{N-K}, \\\\ \\int _{\\mathbb {R}^N} |u|^2 \\, dx = \\rho > 0, \\end{array}\\right. } \\end{aligned}$$</span><p>in the so-called at least mass critical regime. We utilize recently introduced variational techniques involving the minimization on the <span>\\(L^2\\)</span>-ball. Moreover, we find also a solution to the related curl–curl problem </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} \\nabla \\times \\nabla \\times \\textbf{U}+\\lambda \\textbf{U}=f(\\textbf{U}), \\quad x \\in \\mathbb {R}^N,\\\\ \\int _{\\mathbb {R}^N}|\\textbf{U}|^2\\,dx=\\rho ,\\\\ \\end{array}\\right. } \\end{aligned}$$</span><p>which arises from the system of Maxwell equations and is of great importance in nonlinear optics.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized Solutions to at Least Mass Critical Problems: Singular Polyharmonic Equations and Related Curl–Curl Problems\",\"authors\":\"Bartosz Bieganowski, Jarosław Mederski, Jacopo Schino\",\"doi\":\"10.1007/s12220-024-01770-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are interested in the existence of normalized solutions to the problem </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} (-\\\\Delta )^m u+\\\\frac{\\\\mu }{|y|^{2m}}u + \\\\lambda u = g(u), \\\\quad x = (y,z) \\\\in \\\\mathbb {R}^K \\\\times \\\\mathbb {R}^{N-K}, \\\\\\\\ \\\\int _{\\\\mathbb {R}^N} |u|^2 \\\\, dx = \\\\rho > 0, \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>in the so-called at least mass critical regime. We utilize recently introduced variational techniques involving the minimization on the <span>\\\\(L^2\\\\)</span>-ball. Moreover, we find also a solution to the related curl–curl problem </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} \\\\nabla \\\\times \\\\nabla \\\\times \\\\textbf{U}+\\\\lambda \\\\textbf{U}=f(\\\\textbf{U}), \\\\quad x \\\\in \\\\mathbb {R}^N,\\\\\\\\ \\\\int _{\\\\mathbb {R}^N}|\\\\textbf{U}|^2\\\\,dx=\\\\rho ,\\\\\\\\ \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>which arises from the system of Maxwell equations and is of great importance in nonlinear optics.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01770-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01770-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们对问题 $$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^m u+\frac{mu }{|y|^{2m}}u + \lambda u = g(u) 的归一化解的存在性很感兴趣、\quad x = (y,z) in \mathbb {R}^K \times \mathbb {R}^{N-K}, \int _\{mathbb {R}^N}.|u|^2 \, dx = \rho > 0, \end{array}\right.}\end{aligned}$$ in the so-called at least mass critical regime.我们利用了最近引入的涉及在 \(L^2\)-ball 上最小化的变分技术。此外,我们还找到了相关的卷曲问题 $$\begin{aligned} {\left\{ \begin{array}{ll} 的解。\nabla \times \times \textbf{U}+\lambda \textbf{U}=f(\textbf{U}), \quad x \in \mathbb {R}^N,\int _\mathbb {R}^N}|\textbf{U}|^2\,dx=\rho ,\\end{array}\right.}\end{aligned}$$源于麦克斯韦方程组,在非线性光学中非常重要。
in the so-called at least mass critical regime. We utilize recently introduced variational techniques involving the minimization on the \(L^2\)-ball. Moreover, we find also a solution to the related curl–curl problem