满足 Stein Manifold 上奥卡-格劳尔特原理的非ramified 黎曼域

Makoto Abe, Shun Sugiyama
{"title":"满足 Stein Manifold 上奥卡-格劳尔特原理的非ramified 黎曼域","authors":"Makoto Abe, Shun Sugiyama","doi":"10.1007/s12220-024-01756-w","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((D, \\pi )\\)</span> be an unramified Riemann domain over a Stein manifold of dimension <i>n</i>. Assume that <span>\\(H^k(D,\\mathscr {O}) = 0\\)</span> for <span>\\(2 \\le k \\le n - 1\\)</span> and there exists a complex Lie group <i>G</i> of positive dimension such that all differentiably trivial holomorphic principal <i>G</i>-bundles on <i>D</i> are holomorphically trivial. Then, we prove that <i>D</i> is Stein.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"2011 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unramified Riemann Domains Satisfying the Oka–Grauert Principle over a Stein Manifold\",\"authors\":\"Makoto Abe, Shun Sugiyama\",\"doi\":\"10.1007/s12220-024-01756-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\((D, \\\\pi )\\\\)</span> be an unramified Riemann domain over a Stein manifold of dimension <i>n</i>. Assume that <span>\\\\(H^k(D,\\\\mathscr {O}) = 0\\\\)</span> for <span>\\\\(2 \\\\le k \\\\le n - 1\\\\)</span> and there exists a complex Lie group <i>G</i> of positive dimension such that all differentiably trivial holomorphic principal <i>G</i>-bundles on <i>D</i> are holomorphically trivial. Then, we prove that <i>D</i> is Stein.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"2011 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01756-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01756-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设 \(H^k(D,\mathscr {O}) = 0\) for\(2 \le k \le n - 1\) 并且存在一个正维度的复数李群 G,使得 D 上所有微分琐碎的全形主 G 束都是全形琐碎的。那么,我们证明 D 是 Stein。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unramified Riemann Domains Satisfying the Oka–Grauert Principle over a Stein Manifold

Let \((D, \pi )\) be an unramified Riemann domain over a Stein manifold of dimension n. Assume that \(H^k(D,\mathscr {O}) = 0\) for \(2 \le k \le n - 1\) and there exists a complex Lie group G of positive dimension such that all differentiably trivial holomorphic principal G-bundles on D are holomorphically trivial. Then, we prove that D is Stein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信