论发散复几何积分的有限部分及其与赫米蒂公设选择的关系

Ludvig Svensson
{"title":"论发散复几何积分的有限部分及其与赫米蒂公设选择的关系","authors":"Ludvig Svensson","doi":"10.1007/s12220-024-01773-9","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a reduced complex space of pure dimension. We consider divergent integrals of certain forms on <i>X</i> that are singular along a subvariety defined by the zero set of a holomorphic section of some holomorphic vector bundle <span>\\(E \\rightarrow X\\)</span>. Given a choice of Hermitian metric on <i>E</i> we define a finite part of the divergent integral. Our main result is an explicit formula for the dependence on the choice of metric of the finite part.\n</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Finite Parts of Divergent Complex Geometric Integrals and Their Dependence on a Choice of Hermitian Metric\",\"authors\":\"Ludvig Svensson\",\"doi\":\"10.1007/s12220-024-01773-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> be a reduced complex space of pure dimension. We consider divergent integrals of certain forms on <i>X</i> that are singular along a subvariety defined by the zero set of a holomorphic section of some holomorphic vector bundle <span>\\\\(E \\\\rightarrow X\\\\)</span>. Given a choice of Hermitian metric on <i>E</i> we define a finite part of the divergent integral. Our main result is an explicit formula for the dependence on the choice of metric of the finite part.\\n</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01773-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01773-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 X 是一个纯维度的还原复数空间。我们考虑 X 上某些形式的发散积分,这些发散积分沿着某个全纯向量束 \(E \rightarrow X\) 的全纯段的零集定义的子维奇异。给定 E 上赫米特度量的选择,我们定义发散积分的有限部分。我们的主要结果是有限部分对度量选择的依赖性的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Finite Parts of Divergent Complex Geometric Integrals and Their Dependence on a Choice of Hermitian Metric

Let X be a reduced complex space of pure dimension. We consider divergent integrals of certain forms on X that are singular along a subvariety defined by the zero set of a holomorphic section of some holomorphic vector bundle \(E \rightarrow X\). Given a choice of Hermitian metric on E we define a finite part of the divergent integral. Our main result is an explicit formula for the dependence on the choice of metric of the finite part.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信