{"title":"论发散复几何积分的有限部分及其与赫米蒂公设选择的关系","authors":"Ludvig Svensson","doi":"10.1007/s12220-024-01773-9","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a reduced complex space of pure dimension. We consider divergent integrals of certain forms on <i>X</i> that are singular along a subvariety defined by the zero set of a holomorphic section of some holomorphic vector bundle <span>\\(E \\rightarrow X\\)</span>. Given a choice of Hermitian metric on <i>E</i> we define a finite part of the divergent integral. Our main result is an explicit formula for the dependence on the choice of metric of the finite part.\n</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Finite Parts of Divergent Complex Geometric Integrals and Their Dependence on a Choice of Hermitian Metric\",\"authors\":\"Ludvig Svensson\",\"doi\":\"10.1007/s12220-024-01773-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> be a reduced complex space of pure dimension. We consider divergent integrals of certain forms on <i>X</i> that are singular along a subvariety defined by the zero set of a holomorphic section of some holomorphic vector bundle <span>\\\\(E \\\\rightarrow X\\\\)</span>. Given a choice of Hermitian metric on <i>E</i> we define a finite part of the divergent integral. Our main result is an explicit formula for the dependence on the choice of metric of the finite part.\\n</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01773-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01773-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 X 是一个纯维度的还原复数空间。我们考虑 X 上某些形式的发散积分,这些发散积分沿着某个全纯向量束 \(E \rightarrow X\) 的全纯段的零集定义的子维奇异。给定 E 上赫米特度量的选择,我们定义发散积分的有限部分。我们的主要结果是有限部分对度量选择的依赖性的明确公式。
On Finite Parts of Divergent Complex Geometric Integrals and Their Dependence on a Choice of Hermitian Metric
Let X be a reduced complex space of pure dimension. We consider divergent integrals of certain forms on X that are singular along a subvariety defined by the zero set of a holomorphic section of some holomorphic vector bundle \(E \rightarrow X\). Given a choice of Hermitian metric on E we define a finite part of the divergent integral. Our main result is an explicit formula for the dependence on the choice of metric of the finite part.