奥利兹-哈代和奥利兹-坎帕纳托空间乘积的双线性分解

Chenglong Fang, Liguang Liu
{"title":"奥利兹-哈代和奥利兹-坎帕纳托空间乘积的双线性分解","authors":"Chenglong Fang, Liguang Liu","doi":"10.1007/s12220-024-01777-5","DOIUrl":null,"url":null,"abstract":"<p>For an Orlicz function <span>\\(\\varphi \\)</span> with critical lower type <span>\\(i(\\varphi )\\in (0, 1)\\)</span> and upper type <span>\\(I(\\varphi )\\in (0,1)\\)</span>, set <span>\\(m(\\varphi )=\\lfloor n(1/i(\\varphi )-1)\\rfloor \\)</span>. In this paper, the authors establish bilinear decomposition for the product of the Orlicz–Hardy space <span>\\(H^{\\varphi }({\\mathbb {R}}^{n})\\)</span> and its dual space—the Orlicz–Campanato space <span>\\({\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span>. In particular, the authors prove that the product (in the sense of distributions) of <span>\\(f\\in H^{\\varphi }({\\mathbb {R}}^{n})\\)</span> and <span>\\(g\\in {\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span> can be decomposed into the sum of <i>S</i>(<i>f</i>, <i>g</i>) and <i>T</i>(<i>f</i>, <i>g</i>), where <i>S</i> is a bilinear operator bounded from <span>\\(H^{\\varphi }({\\mathbb {R}}^{n})\\times {\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span> to <span>\\(L^{1}({\\mathbb {R}}^{n})\\)</span> and <i>T</i> is another bilinear operator bounded from <span>\\(H^{\\varphi }({\\mathbb {R}}^{n})\\times {\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span> to the Musielak–Orlicz–Hardy space <span>\\(H^{\\Phi }({\\mathbb {R}}^{n})\\)</span>, with <span>\\(\\Phi \\)</span> being a Musielak–Orlicz function determined by <span>\\(\\varphi \\)</span>. The bilinear decomposition is sharp in the following sense: any vector space <span>\\({\\mathcal {Y}}\\subset H^{\\Phi }({\\mathbb {R}}^{n})\\)</span> that adapted to the above bilinear decomposition should satisfy <span>\\( L^\\infty ({\\mathbb {R}}^{n})\\cap {\\mathcal {Y}}^{*}=L^\\infty ({\\mathbb {R}}^{n})\\cap (H^{\\Phi }({\\mathbb {R}}^{n}))^{*} \\)</span>. Indeed, <span>\\(L^\\infty ({\\mathbb {R}}^{n})\\cap (H^{\\Phi }({\\mathbb {R}}^{n}))^{*}\\)</span> is just the multiplier space of <span>\\({\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span>. As applications, the authors obtain not only a priori estimate of the div-curl product involving the space <span>\\(H^{\\Phi }({\\mathbb {R}}^{n})\\)</span>, but also the boundedness of the Calderón–Zygmund commutator [<i>b</i>, <i>T</i>] from the Hardy type space <span>\\(H^{\\varphi }_{b}({\\mathbb {R}}^{n})\\)</span> to <span>\\(L^{1}({\\mathbb {R}}^{n})\\)</span> or <span>\\(H^{1}({\\mathbb {R}}^{n})\\)</span> under <span>\\(b\\in {\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span>, <span>\\(m(\\varphi )=0\\)</span> and suitable cancellation conditions of <i>T</i>.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilinear Decompositions for Products of Orlicz–Hardy and Orlicz–Campanato Spaces\",\"authors\":\"Chenglong Fang, Liguang Liu\",\"doi\":\"10.1007/s12220-024-01777-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For an Orlicz function <span>\\\\(\\\\varphi \\\\)</span> with critical lower type <span>\\\\(i(\\\\varphi )\\\\in (0, 1)\\\\)</span> and upper type <span>\\\\(I(\\\\varphi )\\\\in (0,1)\\\\)</span>, set <span>\\\\(m(\\\\varphi )=\\\\lfloor n(1/i(\\\\varphi )-1)\\\\rfloor \\\\)</span>. In this paper, the authors establish bilinear decomposition for the product of the Orlicz–Hardy space <span>\\\\(H^{\\\\varphi }({\\\\mathbb {R}}^{n})\\\\)</span> and its dual space—the Orlicz–Campanato space <span>\\\\({\\\\mathfrak {L}}_{\\\\varphi }({\\\\mathbb {R}}^{n})\\\\)</span>. In particular, the authors prove that the product (in the sense of distributions) of <span>\\\\(f\\\\in H^{\\\\varphi }({\\\\mathbb {R}}^{n})\\\\)</span> and <span>\\\\(g\\\\in {\\\\mathfrak {L}}_{\\\\varphi }({\\\\mathbb {R}}^{n})\\\\)</span> can be decomposed into the sum of <i>S</i>(<i>f</i>, <i>g</i>) and <i>T</i>(<i>f</i>, <i>g</i>), where <i>S</i> is a bilinear operator bounded from <span>\\\\(H^{\\\\varphi }({\\\\mathbb {R}}^{n})\\\\times {\\\\mathfrak {L}}_{\\\\varphi }({\\\\mathbb {R}}^{n})\\\\)</span> to <span>\\\\(L^{1}({\\\\mathbb {R}}^{n})\\\\)</span> and <i>T</i> is another bilinear operator bounded from <span>\\\\(H^{\\\\varphi }({\\\\mathbb {R}}^{n})\\\\times {\\\\mathfrak {L}}_{\\\\varphi }({\\\\mathbb {R}}^{n})\\\\)</span> to the Musielak–Orlicz–Hardy space <span>\\\\(H^{\\\\Phi }({\\\\mathbb {R}}^{n})\\\\)</span>, with <span>\\\\(\\\\Phi \\\\)</span> being a Musielak–Orlicz function determined by <span>\\\\(\\\\varphi \\\\)</span>. The bilinear decomposition is sharp in the following sense: any vector space <span>\\\\({\\\\mathcal {Y}}\\\\subset H^{\\\\Phi }({\\\\mathbb {R}}^{n})\\\\)</span> that adapted to the above bilinear decomposition should satisfy <span>\\\\( L^\\\\infty ({\\\\mathbb {R}}^{n})\\\\cap {\\\\mathcal {Y}}^{*}=L^\\\\infty ({\\\\mathbb {R}}^{n})\\\\cap (H^{\\\\Phi }({\\\\mathbb {R}}^{n}))^{*} \\\\)</span>. Indeed, <span>\\\\(L^\\\\infty ({\\\\mathbb {R}}^{n})\\\\cap (H^{\\\\Phi }({\\\\mathbb {R}}^{n}))^{*}\\\\)</span> is just the multiplier space of <span>\\\\({\\\\mathfrak {L}}_{\\\\varphi }({\\\\mathbb {R}}^{n})\\\\)</span>. As applications, the authors obtain not only a priori estimate of the div-curl product involving the space <span>\\\\(H^{\\\\Phi }({\\\\mathbb {R}}^{n})\\\\)</span>, but also the boundedness of the Calderón–Zygmund commutator [<i>b</i>, <i>T</i>] from the Hardy type space <span>\\\\(H^{\\\\varphi }_{b}({\\\\mathbb {R}}^{n})\\\\)</span> to <span>\\\\(L^{1}({\\\\mathbb {R}}^{n})\\\\)</span> or <span>\\\\(H^{1}({\\\\mathbb {R}}^{n})\\\\)</span> under <span>\\\\(b\\\\in {\\\\mathfrak {L}}_{\\\\varphi }({\\\\mathbb {R}}^{n})\\\\)</span>, <span>\\\\(m(\\\\varphi )=0\\\\)</span> and suitable cancellation conditions of <i>T</i>.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01777-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01777-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于具有临界下型(i(\varphi)\in (0, 1))和上型(I(\varphi)\in (0,1))的奥利兹函数\(\varphi),设\(m(\varphi )=\lfloor n(1/i(\varphi )-1)\rfloor\).在本文中,作者建立了奥利兹-哈代空间(Orlicz-Hardy space)\(H^{\varphi }({\mathbb {R}}^{n})\) 和它的对偶空间--奥利兹-坎帕纳托空间(Orlicz-Campanato space)\({\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\) 的乘积的双线性分解。特别是,作者证明了 \(f\in H^{\varphi }({\mathbb {R}^{n})\) 和 \(g\in {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\) 的乘积(在分布的意义上)可以分解为 S(f, g) 和 T(f, g) 的和、)其中 S 是一个从 \(H^{\varphi }({\mathbb {R}}^{n})imes {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\ 到 \(L^{1}({\mathbb {R}}^{n})\ 的双线性算子,T 是另一个从 \(H^{\varphi }({\mathbb {R}}^{n})\ 到 \(L^{1}({\mathbb {R}}^{n})\ 的双线性算子。从 \(H^{\varphi }({\mathbb {R}}^{n})times {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\ 到 Musielak-Orlicz-Hardy 空间的有界算子、(\Phi)是由\(\varphi\)决定的穆西拉克-奥利兹函数。双线性分解在以下意义上是尖锐的:任何适应上述双线性分解的向量空间都应该满足( L^\infty ({\mathbb {R}}^{n})\cap {\mathcal {Y}}^{*}=L^\infty ({\mathbb {R}}^{n})\cap (H^{\Phi }({\mathbb {R}}^{n}))^{*}.\).事实上,\(L^\infty ({\mathbb {R}}^{n})\cap (H^{\Phi }({\mathbb {R}}^{n}))^{*}\) 只是 \({\mathfrak {L}_{\varphi }({\mathbb {R}}^{n})\) 的乘数空间。)作为应用,作者不仅得到了涉及空间 \(H^{\Phi }({\mathbb {R}}^{n})\ 的 div-curl 积的先验估计,还得到了 Calderón-Zygmund 换元[b. T]的有界性、T] from the Hardy type space \(H^{\varphi }_{b}({\mathbb {R}}^{n})\ to \(L^{1}({\mathbb {R}}^{n})\) or \(H^{1}({\mathbb {R}}^{n})\) under \(b\in {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\)、\(m(\varphi)=0\)和 T 的适当取消条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bilinear Decompositions for Products of Orlicz–Hardy and Orlicz–Campanato Spaces

For an Orlicz function \(\varphi \) with critical lower type \(i(\varphi )\in (0, 1)\) and upper type \(I(\varphi )\in (0,1)\), set \(m(\varphi )=\lfloor n(1/i(\varphi )-1)\rfloor \). In this paper, the authors establish bilinear decomposition for the product of the Orlicz–Hardy space \(H^{\varphi }({\mathbb {R}}^{n})\) and its dual space—the Orlicz–Campanato space \({\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\). In particular, the authors prove that the product (in the sense of distributions) of \(f\in H^{\varphi }({\mathbb {R}}^{n})\) and \(g\in {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\) can be decomposed into the sum of S(fg) and T(fg), where S is a bilinear operator bounded from \(H^{\varphi }({\mathbb {R}}^{n})\times {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\) to \(L^{1}({\mathbb {R}}^{n})\) and T is another bilinear operator bounded from \(H^{\varphi }({\mathbb {R}}^{n})\times {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\) to the Musielak–Orlicz–Hardy space \(H^{\Phi }({\mathbb {R}}^{n})\), with \(\Phi \) being a Musielak–Orlicz function determined by \(\varphi \). The bilinear decomposition is sharp in the following sense: any vector space \({\mathcal {Y}}\subset H^{\Phi }({\mathbb {R}}^{n})\) that adapted to the above bilinear decomposition should satisfy \( L^\infty ({\mathbb {R}}^{n})\cap {\mathcal {Y}}^{*}=L^\infty ({\mathbb {R}}^{n})\cap (H^{\Phi }({\mathbb {R}}^{n}))^{*} \). Indeed, \(L^\infty ({\mathbb {R}}^{n})\cap (H^{\Phi }({\mathbb {R}}^{n}))^{*}\) is just the multiplier space of \({\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\). As applications, the authors obtain not only a priori estimate of the div-curl product involving the space \(H^{\Phi }({\mathbb {R}}^{n})\), but also the boundedness of the Calderón–Zygmund commutator [bT] from the Hardy type space \(H^{\varphi }_{b}({\mathbb {R}}^{n})\) to \(L^{1}({\mathbb {R}}^{n})\) or \(H^{1}({\mathbb {R}}^{n})\) under \(b\in {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\), \(m(\varphi )=0\) and suitable cancellation conditions of T.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信