用于估算城市环境中自我车道指数的基于视觉的稳健方法和新数据集

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dianzheng Wang, Dongyi Liang, Shaomiao Li
{"title":"用于估算城市环境中自我车道指数的基于视觉的稳健方法和新数据集","authors":"Dianzheng Wang, Dongyi Liang, Shaomiao Li","doi":"10.1007/s00138-024-01590-8","DOIUrl":null,"url":null,"abstract":"<p>Correct and robust ego-lane index estimation is crucial for autonomous driving in the absence of high-definition maps, especially in urban environments. Previous ego-lane index estimation approaches rely on feature extraction, which limits the robustness. To overcome these shortages, this study proposes a robust ego-lane index estimation framework upon only the original visual image. After optimization of the processing route, the raw image was randomly cropped in the height direction and then input into a double supervised LaneLoc network to obtain the index estimations and confidences. A post-process was also proposed to achieve the global ego-lane index from the estimated left and right indexes with the total lane number. To evaluate our proposed method, we manually annotated the ego-lane index of public datasets which can work as an ego-lane index estimation baseline for the first time. The proposed algorithm achieved 96.48/95.40% (precision/recall) on the CULane dataset and 99.45/99.49% (precision/recall) on the TuSimple dataset, demonstrating the effectiveness and efficiency of lane localization in diverse driving environments. The code and dataset annotation results will be exposed publicly on https://github.com/haomo-ai/LaneLoc.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"34 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust visual-based method and new datasets for ego-lane index estimation in urban environment\",\"authors\":\"Dianzheng Wang, Dongyi Liang, Shaomiao Li\",\"doi\":\"10.1007/s00138-024-01590-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Correct and robust ego-lane index estimation is crucial for autonomous driving in the absence of high-definition maps, especially in urban environments. Previous ego-lane index estimation approaches rely on feature extraction, which limits the robustness. To overcome these shortages, this study proposes a robust ego-lane index estimation framework upon only the original visual image. After optimization of the processing route, the raw image was randomly cropped in the height direction and then input into a double supervised LaneLoc network to obtain the index estimations and confidences. A post-process was also proposed to achieve the global ego-lane index from the estimated left and right indexes with the total lane number. To evaluate our proposed method, we manually annotated the ego-lane index of public datasets which can work as an ego-lane index estimation baseline for the first time. The proposed algorithm achieved 96.48/95.40% (precision/recall) on the CULane dataset and 99.45/99.49% (precision/recall) on the TuSimple dataset, demonstrating the effectiveness and efficiency of lane localization in diverse driving environments. The code and dataset annotation results will be exposed publicly on https://github.com/haomo-ai/LaneLoc.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01590-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01590-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在没有高清地图的情况下,尤其是在城市环境中,正确、稳健的自我车道指数估计对于自动驾驶至关重要。以往的自我车道指数估计方法依赖于特征提取,这限制了其鲁棒性。为了克服这些不足,本研究提出了一种仅基于原始视觉图像的鲁棒自我车道指数估算框架。在优化处理路径后,原始图像在高度方向被随机裁剪,然后输入双重监督的 LaneLoc 网络,以获得指数估计值和可信度。此外,我们还提出了一种后处理方法,通过估算出的左侧和右侧指数以及总车道数来获得全局自我车道指数。为了评估我们提出的方法,我们首次对可作为自我车道指数估计基准的公共数据集的自我车道指数进行了人工标注。所提出的算法在 CULane 数据集上实现了 96.48%/95.40% 的精度/召回率,在 TuSimple 数据集上实现了 99.45%/99.49% 的精度/召回率,证明了在不同驾驶环境下车道定位的有效性和高效性。代码和数据集注释结果将在 https://github.com/haomo-ai/LaneLoc 上公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust visual-based method and new datasets for ego-lane index estimation in urban environment

Robust visual-based method and new datasets for ego-lane index estimation in urban environment

Correct and robust ego-lane index estimation is crucial for autonomous driving in the absence of high-definition maps, especially in urban environments. Previous ego-lane index estimation approaches rely on feature extraction, which limits the robustness. To overcome these shortages, this study proposes a robust ego-lane index estimation framework upon only the original visual image. After optimization of the processing route, the raw image was randomly cropped in the height direction and then input into a double supervised LaneLoc network to obtain the index estimations and confidences. A post-process was also proposed to achieve the global ego-lane index from the estimated left and right indexes with the total lane number. To evaluate our proposed method, we manually annotated the ego-lane index of public datasets which can work as an ego-lane index estimation baseline for the first time. The proposed algorithm achieved 96.48/95.40% (precision/recall) on the CULane dataset and 99.45/99.49% (precision/recall) on the TuSimple dataset, demonstrating the effectiveness and efficiency of lane localization in diverse driving environments. The code and dataset annotation results will be exposed publicly on https://github.com/haomo-ai/LaneLoc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Vision and Applications
Machine Vision and Applications 工程技术-工程:电子与电气
CiteScore
6.30
自引率
3.00%
发文量
84
审稿时长
8.7 months
期刊介绍: Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal. Particular emphasis is placed on engineering and technology aspects of image processing and computer vision. The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信