{"title":"使用生理辅助和自适应 LSTM 的高效驾驶行为预测方法","authors":"Jun Gao, Jiangang Yi, Yi Lu Murphey","doi":"10.1007/s00138-024-01600-9","DOIUrl":null,"url":null,"abstract":"<p>Driving behavior prediction is crucial in designing a modern Advanced driver assistance system (ADAS). Such predictions can improve driving safety by alerting the driver to the danger of unsafe or risky traffic situations. In this research, an efficient approach, Driver behavior network (DBNet) is proposed for driving behavior prediction using multiple modality data, <i>i.e.</i> front view video frames and driver physiological signals. Firstly, a Relation-guided spatial attention (RGSA) module is adopted to generate driving scene-centric features by modeling both local and global information from video frames. Secondly, a new Global shrinkage (GS) block is designed to incorporate soft thresholding as nonlinear transformation layer to generate physiological features and eliminate noise-related information from physiological signals. Finally, a customized Adaptive focal loss based Long short term memory (AFL-LSTM) network is introduced to learn the multi-modal features and capture the dependencies within driving behaviors simultaneously. We applied our approach on real data collected during drives in both urban and freeway environment in an instrumented vehicle. The experimental findings demonstrate that the DBNet can predict the upcoming driving behavior efficiently and significantly outperform other state-of-the-art models.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"42 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient driving behavior prediction approach using physiological auxiliary and adaptive LSTM\",\"authors\":\"Jun Gao, Jiangang Yi, Yi Lu Murphey\",\"doi\":\"10.1007/s00138-024-01600-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Driving behavior prediction is crucial in designing a modern Advanced driver assistance system (ADAS). Such predictions can improve driving safety by alerting the driver to the danger of unsafe or risky traffic situations. In this research, an efficient approach, Driver behavior network (DBNet) is proposed for driving behavior prediction using multiple modality data, <i>i.e.</i> front view video frames and driver physiological signals. Firstly, a Relation-guided spatial attention (RGSA) module is adopted to generate driving scene-centric features by modeling both local and global information from video frames. Secondly, a new Global shrinkage (GS) block is designed to incorporate soft thresholding as nonlinear transformation layer to generate physiological features and eliminate noise-related information from physiological signals. Finally, a customized Adaptive focal loss based Long short term memory (AFL-LSTM) network is introduced to learn the multi-modal features and capture the dependencies within driving behaviors simultaneously. We applied our approach on real data collected during drives in both urban and freeway environment in an instrumented vehicle. The experimental findings demonstrate that the DBNet can predict the upcoming driving behavior efficiently and significantly outperform other state-of-the-art models.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01600-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01600-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An efficient driving behavior prediction approach using physiological auxiliary and adaptive LSTM
Driving behavior prediction is crucial in designing a modern Advanced driver assistance system (ADAS). Such predictions can improve driving safety by alerting the driver to the danger of unsafe or risky traffic situations. In this research, an efficient approach, Driver behavior network (DBNet) is proposed for driving behavior prediction using multiple modality data, i.e. front view video frames and driver physiological signals. Firstly, a Relation-guided spatial attention (RGSA) module is adopted to generate driving scene-centric features by modeling both local and global information from video frames. Secondly, a new Global shrinkage (GS) block is designed to incorporate soft thresholding as nonlinear transformation layer to generate physiological features and eliminate noise-related information from physiological signals. Finally, a customized Adaptive focal loss based Long short term memory (AFL-LSTM) network is introduced to learn the multi-modal features and capture the dependencies within driving behaviors simultaneously. We applied our approach on real data collected during drives in both urban and freeway environment in an instrumented vehicle. The experimental findings demonstrate that the DBNet can predict the upcoming driving behavior efficiently and significantly outperform other state-of-the-art models.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.