活跃的 EB1 涌流促进微管蛋白流入果蝇双节嗅纤毛的生长外节

Riddhi Girdhar Agarwal, Saishree Iyer, Ayan Barbora, Yogesh Gadgil, Swadhin Jana, Krishanu Ray
{"title":"活跃的 EB1 涌流促进微管蛋白流入果蝇双节嗅纤毛的生长外节","authors":"Riddhi Girdhar Agarwal, Saishree Iyer, Ayan Barbora, Yogesh Gadgil, Swadhin Jana, Krishanu Ray","doi":"10.1101/2024.09.10.612170","DOIUrl":null,"url":null,"abstract":"Abstract:\nLike a photoreceptor cilium, the sensory cilia have a complex bipartite architecture containing 9+0 connecting cilium at the base and a singlet microtubule-supported, highly membranous outer segment, essential for the receptor display. How such diverse cilia morphology and underlying microtubule cytoskeleton develops remains unclear. Here we show that individual olfactory cilium, inside the large basiconic sensilla in developing Drosophila antenna, grows in episodic steps following several pulsatile influxes of tubulin. Each tubulin influx event is preceded by transient elevations of a microtubule-stabilising protein, the End-binding protein 1 (EB1). Additionally, EB1 is found to specifically interact with the tail domain of Drosophila KLP68D, an orthologue of the kinesin-2beta motor subunit, in vitro. Finally, the loss of EB1 in olfactory neurons preceding the growth surges reduces the tubulin influx as well as arrests the olfactory cilia assembly and stability. These findings suggest a novel mechanism of bipartite cilia assembly.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active EB1 surges promote tubulin influx into the growing outer segments of the bipartite olfactory cilia in Drosophila\",\"authors\":\"Riddhi Girdhar Agarwal, Saishree Iyer, Ayan Barbora, Yogesh Gadgil, Swadhin Jana, Krishanu Ray\",\"doi\":\"10.1101/2024.09.10.612170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:\\nLike a photoreceptor cilium, the sensory cilia have a complex bipartite architecture containing 9+0 connecting cilium at the base and a singlet microtubule-supported, highly membranous outer segment, essential for the receptor display. How such diverse cilia morphology and underlying microtubule cytoskeleton develops remains unclear. Here we show that individual olfactory cilium, inside the large basiconic sensilla in developing Drosophila antenna, grows in episodic steps following several pulsatile influxes of tubulin. Each tubulin influx event is preceded by transient elevations of a microtubule-stabilising protein, the End-binding protein 1 (EB1). Additionally, EB1 is found to specifically interact with the tail domain of Drosophila KLP68D, an orthologue of the kinesin-2beta motor subunit, in vitro. Finally, the loss of EB1 in olfactory neurons preceding the growth surges reduces the tubulin influx as well as arrests the olfactory cilia assembly and stability. These findings suggest a novel mechanism of bipartite cilia assembly.\",\"PeriodicalId\":501590,\"journal\":{\"name\":\"bioRxiv - Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.10.612170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:与光感受器纤毛一样,感觉纤毛也具有复杂的两部分结构,包括基部的 9+0 连接纤毛和由单根微管支持的高度膜质外段,这对受体显示至关重要。目前还不清楚这种多样化的纤毛形态和底层微管细胞骨架是如何形成的。在这里,我们展示了果蝇触角发育中的大基底感觉器内的单个嗅觉纤毛在管蛋白的几次脉冲式流入后以偶发步骤生长。每次微管蛋白流入之前,微管稳定蛋白--末端结合蛋白 1(EB1)--都会短暂升高。此外,EB1 还能在体外与果蝇 KLP68D(驱动蛋白-2beta 运动亚基的直向同源物)的尾部结构域发生特异性相互作用。最后,嗅觉神经元在生长突增之前失去 EB1 会减少微管蛋白的流入,并抑制嗅觉纤毛的装配和稳定性。这些发现提出了一种新的双纤毛组装机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active EB1 surges promote tubulin influx into the growing outer segments of the bipartite olfactory cilia in Drosophila
Abstract: Like a photoreceptor cilium, the sensory cilia have a complex bipartite architecture containing 9+0 connecting cilium at the base and a singlet microtubule-supported, highly membranous outer segment, essential for the receptor display. How such diverse cilia morphology and underlying microtubule cytoskeleton develops remains unclear. Here we show that individual olfactory cilium, inside the large basiconic sensilla in developing Drosophila antenna, grows in episodic steps following several pulsatile influxes of tubulin. Each tubulin influx event is preceded by transient elevations of a microtubule-stabilising protein, the End-binding protein 1 (EB1). Additionally, EB1 is found to specifically interact with the tail domain of Drosophila KLP68D, an orthologue of the kinesin-2beta motor subunit, in vitro. Finally, the loss of EB1 in olfactory neurons preceding the growth surges reduces the tubulin influx as well as arrests the olfactory cilia assembly and stability. These findings suggest a novel mechanism of bipartite cilia assembly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信