迹图变厚:非欧几里得空间的 MCMC 诊断方法

Luke Duttweiler, Jonathan Klus, Brent Coull, Sally W. Thurston
{"title":"迹图变厚:非欧几里得空间的 MCMC 诊断方法","authors":"Luke Duttweiler, Jonathan Klus, Brent Coull, Sally W. Thurston","doi":"arxiv-2408.15392","DOIUrl":null,"url":null,"abstract":"MCMC algorithms are frequently used to perform inference under a Bayesian\nmodeling framework. Convergence diagnostics, such as traceplots, the\nGelman-Rubin potential scale reduction factor, and effective sample size, are\nused to visualize mixing and determine how long to run the sampler. However,\nthese classic diagnostics can be ineffective when the sample space of the\nalgorithm is highly discretized (eg. Bayesian Networks or Dirichlet Process\nMixture Models) or the sampler uses frequent non-Euclidean moves. In this\narticle, we develop novel generalized convergence diagnostics produced by\nmapping the original space to the real-line while respecting a relevant\ndistance function and then evaluating the convergence diagnostics on the mapped\nvalues. Simulated examples are provided that demonstrate the success of this\nmethod in identifying failures to converge that are missed or unavailable by\nother methods.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Traceplot Thickens: MCMC Diagnostics for Non-Euclidean Spaces\",\"authors\":\"Luke Duttweiler, Jonathan Klus, Brent Coull, Sally W. Thurston\",\"doi\":\"arxiv-2408.15392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MCMC algorithms are frequently used to perform inference under a Bayesian\\nmodeling framework. Convergence diagnostics, such as traceplots, the\\nGelman-Rubin potential scale reduction factor, and effective sample size, are\\nused to visualize mixing and determine how long to run the sampler. However,\\nthese classic diagnostics can be ineffective when the sample space of the\\nalgorithm is highly discretized (eg. Bayesian Networks or Dirichlet Process\\nMixture Models) or the sampler uses frequent non-Euclidean moves. In this\\narticle, we develop novel generalized convergence diagnostics produced by\\nmapping the original space to the real-line while respecting a relevant\\ndistance function and then evaluating the convergence diagnostics on the mapped\\nvalues. Simulated examples are provided that demonstrate the success of this\\nmethod in identifying failures to converge that are missed or unavailable by\\nother methods.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

MCMC 算法经常用于在贝叶斯建模框架下进行推理。收敛性诊断,如轨迹图、Gelman-Rubin 潜在规模缩减因子和有效样本大小,被用来直观显示混合情况并确定运行采样器的时间。然而,当算法的样本空间高度离散化(如贝叶斯网络或狄利克特过程混合模型)或采样器频繁使用非欧几里得移动时,这些经典诊断方法就会失效。在本文中,我们通过将原始空间映射到实线上,同时尊重相关的距离函数,然后在映射值上评估收敛诊断,开发出了新颖的通用收敛诊断。文中提供的模拟示例证明了这种方法在识别收敛失败方面的成功,而这些失败是其他方法所遗漏或无法识别的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Traceplot Thickens: MCMC Diagnostics for Non-Euclidean Spaces
MCMC algorithms are frequently used to perform inference under a Bayesian modeling framework. Convergence diagnostics, such as traceplots, the Gelman-Rubin potential scale reduction factor, and effective sample size, are used to visualize mixing and determine how long to run the sampler. However, these classic diagnostics can be ineffective when the sample space of the algorithm is highly discretized (eg. Bayesian Networks or Dirichlet Process Mixture Models) or the sampler uses frequent non-Euclidean moves. In this article, we develop novel generalized convergence diagnostics produced by mapping the original space to the real-line while respecting a relevant distance function and then evaluating the convergence diagnostics on the mapped values. Simulated examples are provided that demonstrate the success of this method in identifying failures to converge that are missed or unavailable by other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信