随机向量近似信息传递与相位检索的应用

Hajime Ueda, Shun Katakami, Masato Okada
{"title":"随机向量近似信息传递与相位检索的应用","authors":"Hajime Ueda, Shun Katakami, Masato Okada","doi":"arxiv-2408.17102","DOIUrl":null,"url":null,"abstract":"Phase retrieval refers to the problem of recovering a high-dimensional vector\n$\\boldsymbol{x} \\in \\mathbb{C}^N$ from the magnitude of its linear transform\n$\\boldsymbol{z} = A \\boldsymbol{x}$, observed through a noisy channel. To\nimprove the ill-posed nature of the inverse problem, it is a common practice to\nobserve the magnitude of linear measurements $\\boldsymbol{z}^{(1)} = A^{(1)}\n\\boldsymbol{x},..., \\boldsymbol{z}^{(L)} = A^{(L)}\\boldsymbol{x}$ using\nmultiple sensing matrices $A^{(1)},..., A^{(L)}$, with ptychographic imaging\nbeing a remarkable example of such strategies. Inspired by existing algorithms\nfor ptychographic reconstruction, we introduce stochasticity to Vector\nApproximate Message Passing (VAMP), a computationally efficient algorithm\napplicable to a wide range of Bayesian inverse problems. By testing our\napproach in the setup of phase retrieval, we show the superior convergence\nspeed of the proposed algorithm.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Vector Approximate Message Passing with applications to phase retrieval\",\"authors\":\"Hajime Ueda, Shun Katakami, Masato Okada\",\"doi\":\"arxiv-2408.17102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase retrieval refers to the problem of recovering a high-dimensional vector\\n$\\\\boldsymbol{x} \\\\in \\\\mathbb{C}^N$ from the magnitude of its linear transform\\n$\\\\boldsymbol{z} = A \\\\boldsymbol{x}$, observed through a noisy channel. To\\nimprove the ill-posed nature of the inverse problem, it is a common practice to\\nobserve the magnitude of linear measurements $\\\\boldsymbol{z}^{(1)} = A^{(1)}\\n\\\\boldsymbol{x},..., \\\\boldsymbol{z}^{(L)} = A^{(L)}\\\\boldsymbol{x}$ using\\nmultiple sensing matrices $A^{(1)},..., A^{(L)}$, with ptychographic imaging\\nbeing a remarkable example of such strategies. Inspired by existing algorithms\\nfor ptychographic reconstruction, we introduce stochasticity to Vector\\nApproximate Message Passing (VAMP), a computationally efficient algorithm\\napplicable to a wide range of Bayesian inverse problems. By testing our\\napproach in the setup of phase retrieval, we show the superior convergence\\nspeed of the proposed algorithm.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相位检索指的是从(mathbb{C}^N)中的高维向量(vector)的线性变换(linear transform)的大小中恢复高维向量(vector)的问题。\的线性变换$\boldsymbol{z} = A \boldsymbol{x}$的大小,并通过噪声信道进行观测。为了改善逆问题的无解性质,通常的做法是观察线性测量的大小 $\boldsymbol{z}^{(1)} = A^{(1)}\boldsymbol{x},..., \boldsymbol{z}^{(L)} = A^{(L)}\boldsymbol{x}$ 使用多个传感矩阵 $A^{(1)},..., A^{(L)}$,梯度成像就是这种策略的一个显著例子。受现有的阶梯图像重建算法的启发,我们在矢量近似信息传递(VAMP)中引入了随机性,这是一种适用于多种贝叶斯逆问题的高效计算算法。通过在相位检索设置中测试我们的方法,我们展示了所提出算法的卓越收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Vector Approximate Message Passing with applications to phase retrieval
Phase retrieval refers to the problem of recovering a high-dimensional vector $\boldsymbol{x} \in \mathbb{C}^N$ from the magnitude of its linear transform $\boldsymbol{z} = A \boldsymbol{x}$, observed through a noisy channel. To improve the ill-posed nature of the inverse problem, it is a common practice to observe the magnitude of linear measurements $\boldsymbol{z}^{(1)} = A^{(1)} \boldsymbol{x},..., \boldsymbol{z}^{(L)} = A^{(L)}\boldsymbol{x}$ using multiple sensing matrices $A^{(1)},..., A^{(L)}$, with ptychographic imaging being a remarkable example of such strategies. Inspired by existing algorithms for ptychographic reconstruction, we introduce stochasticity to Vector Approximate Message Passing (VAMP), a computationally efficient algorithm applicable to a wide range of Bayesian inverse problems. By testing our approach in the setup of phase retrieval, we show the superior convergence speed of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信