Alex Glyn-Davies, Connor Duffin, Ieva Kazlauskaite, Mark Girolami, Ö. Deniz Akyildiz
{"title":"通过相互作用粒子朗格文动力学实现统计有限元","authors":"Alex Glyn-Davies, Connor Duffin, Ieva Kazlauskaite, Mark Girolami, Ö. Deniz Akyildiz","doi":"arxiv-2409.07101","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a class of interacting particle Langevin algorithms\nto solve inverse problems for partial differential equations (PDEs). In\nparticular, we leverage the statistical finite elements (statFEM) formulation\nto obtain a finite-dimensional latent variable statistical model where the\nparameter is that of the (discretised) forward map and the latent variable is\nthe statFEM solution of the PDE which is assumed to be partially observed. We\nthen adapt a recently proposed expectation-maximisation like scheme,\ninteracting particle Langevin algorithm (IPLA), for this problem and obtain a\njoint estimation procedure for the parameters and the latent variables. We\nconsider three main examples: (i) estimating the forcing for linear Poisson\nPDE, (ii) estimating the forcing for nonlinear Poisson PDE, and (iii)\nestimating diffusivity for linear Poisson PDE. We provide computational\ncomplexity estimates for forcing estimation in the linear case. We also provide\ncomprehensive numerical experiments and preconditioning strategies that\nsignificantly improve the performance, showing that the proposed class of\nmethods can be the choice for parameter inference in PDE models.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Finite Elements via Interacting Particle Langevin Dynamics\",\"authors\":\"Alex Glyn-Davies, Connor Duffin, Ieva Kazlauskaite, Mark Girolami, Ö. Deniz Akyildiz\",\"doi\":\"arxiv-2409.07101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a class of interacting particle Langevin algorithms\\nto solve inverse problems for partial differential equations (PDEs). In\\nparticular, we leverage the statistical finite elements (statFEM) formulation\\nto obtain a finite-dimensional latent variable statistical model where the\\nparameter is that of the (discretised) forward map and the latent variable is\\nthe statFEM solution of the PDE which is assumed to be partially observed. We\\nthen adapt a recently proposed expectation-maximisation like scheme,\\ninteracting particle Langevin algorithm (IPLA), for this problem and obtain a\\njoint estimation procedure for the parameters and the latent variables. We\\nconsider three main examples: (i) estimating the forcing for linear Poisson\\nPDE, (ii) estimating the forcing for nonlinear Poisson PDE, and (iii)\\nestimating diffusivity for linear Poisson PDE. We provide computational\\ncomplexity estimates for forcing estimation in the linear case. We also provide\\ncomprehensive numerical experiments and preconditioning strategies that\\nsignificantly improve the performance, showing that the proposed class of\\nmethods can be the choice for parameter inference in PDE models.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical Finite Elements via Interacting Particle Langevin Dynamics
In this paper, we develop a class of interacting particle Langevin algorithms
to solve inverse problems for partial differential equations (PDEs). In
particular, we leverage the statistical finite elements (statFEM) formulation
to obtain a finite-dimensional latent variable statistical model where the
parameter is that of the (discretised) forward map and the latent variable is
the statFEM solution of the PDE which is assumed to be partially observed. We
then adapt a recently proposed expectation-maximisation like scheme,
interacting particle Langevin algorithm (IPLA), for this problem and obtain a
joint estimation procedure for the parameters and the latent variables. We
consider three main examples: (i) estimating the forcing for linear Poisson
PDE, (ii) estimating the forcing for nonlinear Poisson PDE, and (iii)
estimating diffusivity for linear Poisson PDE. We provide computational
complexity estimates for forcing estimation in the linear case. We also provide
comprehensive numerical experiments and preconditioning strategies that
significantly improve the performance, showing that the proposed class of
methods can be the choice for parameter inference in PDE models.