以氧化石墨烯为 HTL、氧化锌为 ETL 的富土钾长石基 CZTSSe 太阳能电池性能评估

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
Shweta Yadav, R K Chauhan, Rajan Mishra
{"title":"以氧化石墨烯为 HTL、氧化锌为 ETL 的富土钾长石基 CZTSSe 太阳能电池性能评估","authors":"Shweta Yadav, R K Chauhan, Rajan Mishra","doi":"10.1088/2631-8695/ad6f6d","DOIUrl":null,"url":null,"abstract":"This research investigates the optimization of CZTSSe (copper zinc tin sulfide selenide) solar cells through the integration of graphene oxide (GO) in the role of HTL (hole transport layer) also zinc oxysulfide (Zn(O,S)) in the role of ETL (electron transport layer), replacing the conventional cadmium sulfide (CdS) buffer layer. CZTSSe, characterized by an impactful direct energy bandgap (1–1.5 eV) also a high absorption coefficient (&gt;10<sup>4</sup> cm<sup>−1</sup>), exhibits prospects for efficient light absorption in the visible range. The study employs simulation characterization to comprehensively analyze the impact of the GO hole transparent layer and Zn (O,S) buffer layer on the optical and electrical attributes of the CZTSSe photovoltaic(PV) cell. Key parameters, such as power conversion efficiency (PCE), short-circuit current (J<sub>SC</sub>), fill factor (FF), and open-circuit voltage (V<sub>OC</sub>), are meticulously examined to substantiate the performance of the devices. These parameters include the energy bandgap, variations in thickness, doping concentration, defect density, parasitic resistance, temperature, and generation and recombination processes. The objective is to understand how these factors influence solar cell performances and to enhance light absorption, elevate charge mobility, and minimize carrier recombination losses. The culmination of these efforts results in the CZTSSe solar module achieving its maximum PCE of 28.23% when incorporating a Zn(O,S) ETL along with a GO hole transport layer and ZnO:Al as a window layer.","PeriodicalId":11753,"journal":{"name":"Engineering Research Express","volume":"23 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance assessment of earth-abundant kesterite-based CZTSSe solar cell using graphene oxide as HTL and zinc oxysulfide as ETL\",\"authors\":\"Shweta Yadav, R K Chauhan, Rajan Mishra\",\"doi\":\"10.1088/2631-8695/ad6f6d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the optimization of CZTSSe (copper zinc tin sulfide selenide) solar cells through the integration of graphene oxide (GO) in the role of HTL (hole transport layer) also zinc oxysulfide (Zn(O,S)) in the role of ETL (electron transport layer), replacing the conventional cadmium sulfide (CdS) buffer layer. CZTSSe, characterized by an impactful direct energy bandgap (1–1.5 eV) also a high absorption coefficient (&gt;10<sup>4</sup> cm<sup>−1</sup>), exhibits prospects for efficient light absorption in the visible range. The study employs simulation characterization to comprehensively analyze the impact of the GO hole transparent layer and Zn (O,S) buffer layer on the optical and electrical attributes of the CZTSSe photovoltaic(PV) cell. Key parameters, such as power conversion efficiency (PCE), short-circuit current (J<sub>SC</sub>), fill factor (FF), and open-circuit voltage (V<sub>OC</sub>), are meticulously examined to substantiate the performance of the devices. These parameters include the energy bandgap, variations in thickness, doping concentration, defect density, parasitic resistance, temperature, and generation and recombination processes. The objective is to understand how these factors influence solar cell performances and to enhance light absorption, elevate charge mobility, and minimize carrier recombination losses. The culmination of these efforts results in the CZTSSe solar module achieving its maximum PCE of 28.23% when incorporating a Zn(O,S) ETL along with a GO hole transport layer and ZnO:Al as a window layer.\",\"PeriodicalId\":11753,\"journal\":{\"name\":\"Engineering Research Express\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Research Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-8695/ad6f6d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad6f6d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究探讨了如何优化 CZTSSe(铜锌锡硫化硒)太阳能电池,方法是在 HTL(空穴传输层)中加入氧化石墨烯 (GO),在 ETL(电子传输层)中加入氧化锌 (Zn(O,S)),以取代传统的硫化镉 (CdS) 缓冲层。CZTSSe 具有极具冲击力的直接能带隙(1-1.5 eV)和高吸收系数(104 cm-1),有望在可见光范围内实现高效光吸收。该研究利用模拟特性全面分析了 GO 孔透明层和 Zn (O,S) 缓冲层对 CZTSSe 光伏(PV)电池的光学和电学属性的影响。对功率转换效率 (PCE)、短路电流 (JSC)、填充因子 (FF) 和开路电压 (VOC) 等关键参数进行了细致研究,以证实器件的性能。这些参数包括能带隙、厚度变化、掺杂浓度、缺陷密度、寄生电阻、温度以及生成和重组过程。目的是了解这些因素如何影响太阳能电池的性能,并增强光吸收、提高电荷迁移率和最大限度地减少载流子重组损耗。这些努力的最终结果是,CZTSSe 太阳能模块在结合 Zn(O,S) ETL、GO 孔传输层和 ZnO:Al 作为窗口层时,实现了 28.23% 的最大 PCE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance assessment of earth-abundant kesterite-based CZTSSe solar cell using graphene oxide as HTL and zinc oxysulfide as ETL
This research investigates the optimization of CZTSSe (copper zinc tin sulfide selenide) solar cells through the integration of graphene oxide (GO) in the role of HTL (hole transport layer) also zinc oxysulfide (Zn(O,S)) in the role of ETL (electron transport layer), replacing the conventional cadmium sulfide (CdS) buffer layer. CZTSSe, characterized by an impactful direct energy bandgap (1–1.5 eV) also a high absorption coefficient (>104 cm−1), exhibits prospects for efficient light absorption in the visible range. The study employs simulation characterization to comprehensively analyze the impact of the GO hole transparent layer and Zn (O,S) buffer layer on the optical and electrical attributes of the CZTSSe photovoltaic(PV) cell. Key parameters, such as power conversion efficiency (PCE), short-circuit current (JSC), fill factor (FF), and open-circuit voltage (VOC), are meticulously examined to substantiate the performance of the devices. These parameters include the energy bandgap, variations in thickness, doping concentration, defect density, parasitic resistance, temperature, and generation and recombination processes. The objective is to understand how these factors influence solar cell performances and to enhance light absorption, elevate charge mobility, and minimize carrier recombination losses. The culmination of these efforts results in the CZTSSe solar module achieving its maximum PCE of 28.23% when incorporating a Zn(O,S) ETL along with a GO hole transport layer and ZnO:Al as a window layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Research Express
Engineering Research Express Engineering-Engineering (all)
CiteScore
2.20
自引率
5.90%
发文量
192
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信