利用多输入自回归模型预测轴承剩余使用寿命

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
Junliang Wang, Qinghua Zhang, Guanhua Zhu, Guoxi Sun
{"title":"利用多输入自回归模型预测轴承剩余使用寿命","authors":"Junliang Wang, Qinghua Zhang, Guanhua Zhu, Guoxi Sun","doi":"10.1088/2631-8695/ad68c9","DOIUrl":null,"url":null,"abstract":"Accurate prediction of the remaining useful life (RUL) of rolling bearings is crucial in industrial production, yet existing models often struggle with limited generalization capabilities due to their inability to fully process all vibration signal patterns. We introduce a novel multi-input autoregressive model to address this challenge in RUL prediction for bearings. Our approach uniquely integrates vibration signals with previously predicted RUL values, employing feature fusion to output current window RUL values. Through autoregressive iterations, the model attains a global receptive field, effectively overcoming the limitations in generalization. Furthermore, we innovatively incorporate a segmentation method and multiple training iterations to mitigate error accumulation in autoregressive models. Empirical evaluation on the PMH2012 dataset demonstrates that our model, compared to other backbone networks using similar autoregressive approaches, achieves significantly lower root mean square error (RMSE) and Score. Notably, it outperforms traditional autoregressive models that use label values as inputs and non-autoregressive networks, showing superior generalization abilities with a marked lead in RMSE and Score metrics.","PeriodicalId":11753,"journal":{"name":"Engineering Research Express","volume":"66 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing multiple inputs autoregressive models for bearing remaining useful life prediction\",\"authors\":\"Junliang Wang, Qinghua Zhang, Guanhua Zhu, Guoxi Sun\",\"doi\":\"10.1088/2631-8695/ad68c9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of the remaining useful life (RUL) of rolling bearings is crucial in industrial production, yet existing models often struggle with limited generalization capabilities due to their inability to fully process all vibration signal patterns. We introduce a novel multi-input autoregressive model to address this challenge in RUL prediction for bearings. Our approach uniquely integrates vibration signals with previously predicted RUL values, employing feature fusion to output current window RUL values. Through autoregressive iterations, the model attains a global receptive field, effectively overcoming the limitations in generalization. Furthermore, we innovatively incorporate a segmentation method and multiple training iterations to mitigate error accumulation in autoregressive models. Empirical evaluation on the PMH2012 dataset demonstrates that our model, compared to other backbone networks using similar autoregressive approaches, achieves significantly lower root mean square error (RMSE) and Score. Notably, it outperforms traditional autoregressive models that use label values as inputs and non-autoregressive networks, showing superior generalization abilities with a marked lead in RMSE and Score metrics.\",\"PeriodicalId\":11753,\"journal\":{\"name\":\"Engineering Research Express\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Research Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-8695/ad68c9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad68c9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确预测滚动轴承的剩余使用寿命(RUL)在工业生产中至关重要,但现有的模型由于无法完全处理所有振动信号模式,往往在有限的泛化能力方面举步维艰。我们引入了一种新颖的多输入自回归模型,以应对轴承剩余使用寿命预测中的这一挑战。我们的方法将振动信号与先前预测的 RUL 值进行独特的整合,并采用特征融合来输出当前窗口的 RUL 值。通过自回归迭代,该模型获得了全局感受野,有效克服了泛化的局限性。此外,我们还创新性地加入了分割方法和多次训练迭代,以减少自回归模型中的误差累积。在 PMH2012 数据集上进行的实证评估表明,与使用类似自回归方法的其他骨干网络相比,我们的模型显著降低了均方根误差(RMSE)和得分。值得注意的是,它优于使用标签值作为输入的传统自回归模型和非自回归网络,显示出卓越的泛化能力,在 RMSE 和 Score 指标上明显领先。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing multiple inputs autoregressive models for bearing remaining useful life prediction
Accurate prediction of the remaining useful life (RUL) of rolling bearings is crucial in industrial production, yet existing models often struggle with limited generalization capabilities due to their inability to fully process all vibration signal patterns. We introduce a novel multi-input autoregressive model to address this challenge in RUL prediction for bearings. Our approach uniquely integrates vibration signals with previously predicted RUL values, employing feature fusion to output current window RUL values. Through autoregressive iterations, the model attains a global receptive field, effectively overcoming the limitations in generalization. Furthermore, we innovatively incorporate a segmentation method and multiple training iterations to mitigate error accumulation in autoregressive models. Empirical evaluation on the PMH2012 dataset demonstrates that our model, compared to other backbone networks using similar autoregressive approaches, achieves significantly lower root mean square error (RMSE) and Score. Notably, it outperforms traditional autoregressive models that use label values as inputs and non-autoregressive networks, showing superior generalization abilities with a marked lead in RMSE and Score metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Research Express
Engineering Research Express Engineering-Engineering (all)
CiteScore
2.20
自引率
5.90%
发文量
192
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信