人工智能辅助大学数学考试手写简答题自动评分

Tianyi Liu, Julia Chatain, Laura Kobel-Keller, Gerd Kortemeyer, Thomas Willwacher, Mrinmaya Sachan
{"title":"人工智能辅助大学数学考试手写简答题自动评分","authors":"Tianyi Liu, Julia Chatain, Laura Kobel-Keller, Gerd Kortemeyer, Thomas Willwacher, Mrinmaya Sachan","doi":"arxiv-2408.11728","DOIUrl":null,"url":null,"abstract":"Effective and timely feedback in educational assessments is essential but\nlabor-intensive, especially for complex tasks. Recent developments in automated\nfeedback systems, ranging from deterministic response grading to the evaluation\nof semi-open and open-ended essays, have been facilitated by advances in\nmachine learning. The emergence of pre-trained Large Language Models, such as\nGPT-4, offers promising new opportunities for efficiently processing diverse\nresponse types with minimal customization. This study evaluates the\neffectiveness of a pre-trained GPT-4 model in grading semi-open handwritten\nresponses in a university-level mathematics exam. Our findings indicate that\nGPT-4 provides surprisingly reliable and cost-effective initial grading,\nsubject to subsequent human verification. Future research should focus on\nrefining grading rules and enhancing the extraction of handwritten responses to\nfurther leverage these technologies.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-assisted Automated Short Answer Grading of Handwritten University Level Mathematics Exams\",\"authors\":\"Tianyi Liu, Julia Chatain, Laura Kobel-Keller, Gerd Kortemeyer, Thomas Willwacher, Mrinmaya Sachan\",\"doi\":\"arxiv-2408.11728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective and timely feedback in educational assessments is essential but\\nlabor-intensive, especially for complex tasks. Recent developments in automated\\nfeedback systems, ranging from deterministic response grading to the evaluation\\nof semi-open and open-ended essays, have been facilitated by advances in\\nmachine learning. The emergence of pre-trained Large Language Models, such as\\nGPT-4, offers promising new opportunities for efficiently processing diverse\\nresponse types with minimal customization. This study evaluates the\\neffectiveness of a pre-trained GPT-4 model in grading semi-open handwritten\\nresponses in a university-level mathematics exam. Our findings indicate that\\nGPT-4 provides surprisingly reliable and cost-effective initial grading,\\nsubject to subsequent human verification. Future research should focus on\\nrefining grading rules and enhancing the extraction of handwritten responses to\\nfurther leverage these technologies.\",\"PeriodicalId\":501462,\"journal\":{\"name\":\"arXiv - MATH - History and Overview\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - History and Overview\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在教育评估中,有效而及时的反馈是必不可少的,但这需要大量的人力,尤其是在复杂的任务中。机器学习技术的进步促进了自动反馈系统的最新发展,从确定性答卷评分到半开放式和开放式作文评价,不一而足。预训练大语言模型(如 GPT-4)的出现,为高效处理各种类型的答卷提供了新的机遇,只需进行最少的定制即可。本研究评估了预先训练好的 GPT-4 模型在大学数学考试中对半开放式手写答卷进行评分的效果。我们的研究结果表明,GPT-4 提供了令人惊讶的可靠和经济高效的初始评分,但还需要后续的人工验证。未来的研究应侧重于完善评分规则和加强手写答卷的提取,以进一步利用这些技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-assisted Automated Short Answer Grading of Handwritten University Level Mathematics Exams
Effective and timely feedback in educational assessments is essential but labor-intensive, especially for complex tasks. Recent developments in automated feedback systems, ranging from deterministic response grading to the evaluation of semi-open and open-ended essays, have been facilitated by advances in machine learning. The emergence of pre-trained Large Language Models, such as GPT-4, offers promising new opportunities for efficiently processing diverse response types with minimal customization. This study evaluates the effectiveness of a pre-trained GPT-4 model in grading semi-open handwritten responses in a university-level mathematics exam. Our findings indicate that GPT-4 provides surprisingly reliable and cost-effective initial grading, subject to subsequent human verification. Future research should focus on refining grading rules and enhancing the extraction of handwritten responses to further leverage these technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信