椰子油和蓖麻油涂层对发动机进气无纺布过滤器性能的影响

IF 1 4区 工程技术 Q3 MATERIALS SCIENCE, TEXTILES
Gobi Nallathambi, Rajalekshmi Akasaperumal, Berly Robert
{"title":"椰子油和蓖麻油涂层对发动机进气无纺布过滤器性能的影响","authors":"Gobi Nallathambi, Rajalekshmi Akasaperumal, Berly Robert","doi":"10.1108/ijcst-04-2024-0095","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This research focuses on the development and characterization of oil-wetted spun-bonded polypropylene (PP) non-woven filters for improved air intake systems in automobiles. The study aims to enhance engine performance, durability, fuel economy and emission reduction by addressing key aspects such as contaminants filtration efficiency, loading capacity, pressure drop, temperature performance and longevity.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The research methodology involves the utilization of textile fabrics, particularly oil-wetted spun-bonded PP non-woven filters, renowned for their effective particle collection capability from intake air. Experiments were conducted using a Box–Behnken design with three variables – oil concentration, areal density and dust quantity – each at three different levels to establish correlations with the filter’s dust holding capacity (DHC) and pressure drop.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The findings indicate that immersing particles in oil-coated medium significantly enhances the filter’s DHC. Notably, castor oil as a coating demonstrates remarkable results, with a 97.53% increase in DHC and a high particulate matter filtration efficiency of 94.12%.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study contributes to the originality of research by emphasizing the importance of oil density in determining the filter’s DHC and filtration efficiency. Furthermore, it highlights the superiority of castor oil over coconut oil-coated filter media, advancing air intake and/or filter systems for automotive engines.</p><!--/ Abstract__block -->","PeriodicalId":50330,"journal":{"name":"International Journal of Clothing Science and Technology","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of coconut and castor oil coating on engine intake non-woven filter performance\",\"authors\":\"Gobi Nallathambi, Rajalekshmi Akasaperumal, Berly Robert\",\"doi\":\"10.1108/ijcst-04-2024-0095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This research focuses on the development and characterization of oil-wetted spun-bonded polypropylene (PP) non-woven filters for improved air intake systems in automobiles. The study aims to enhance engine performance, durability, fuel economy and emission reduction by addressing key aspects such as contaminants filtration efficiency, loading capacity, pressure drop, temperature performance and longevity.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The research methodology involves the utilization of textile fabrics, particularly oil-wetted spun-bonded PP non-woven filters, renowned for their effective particle collection capability from intake air. Experiments were conducted using a Box–Behnken design with three variables – oil concentration, areal density and dust quantity – each at three different levels to establish correlations with the filter’s dust holding capacity (DHC) and pressure drop.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The findings indicate that immersing particles in oil-coated medium significantly enhances the filter’s DHC. Notably, castor oil as a coating demonstrates remarkable results, with a 97.53% increase in DHC and a high particulate matter filtration efficiency of 94.12%.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This study contributes to the originality of research by emphasizing the importance of oil density in determining the filter’s DHC and filtration efficiency. Furthermore, it highlights the superiority of castor oil over coconut oil-coated filter media, advancing air intake and/or filter systems for automotive engines.</p><!--/ Abstract__block -->\",\"PeriodicalId\":50330,\"journal\":{\"name\":\"International Journal of Clothing Science and Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Clothing Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/ijcst-04-2024-0095\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Clothing Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ijcst-04-2024-0095","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

目的 本研究的重点是开发和表征用于改进汽车进气系统的油润湿纺粘型聚丙烯(PP)无纺布过滤器。这项研究旨在通过解决污染物过滤效率、负载能力、压降、温度性能和使用寿命等关键问题,提高发动机性能、耐用性、燃油经济性和减排效果。研究方法包括利用纺织织物,特别是油浸湿纺粘型聚丙烯无纺布过滤器,这种过滤器以其有效的进气颗粒收集能力而闻名。实验采用箱式贝肯设计,在三个不同水平上分别使用油浓度、等密度和灰尘量这三个变量,以建立与过滤器的容尘量(DHC)和压降之间的相关性。值得注意的是,作为涂层的蓖麻油效果显著,DHC 提高了 97.53%,颗粒物过滤效率高达 94.12%。此外,它还强调了蓖麻油比椰子油涂层过滤介质的优越性,从而推动了汽车发动机进气和/或过滤系统的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of coconut and castor oil coating on engine intake non-woven filter performance

Purpose

This research focuses on the development and characterization of oil-wetted spun-bonded polypropylene (PP) non-woven filters for improved air intake systems in automobiles. The study aims to enhance engine performance, durability, fuel economy and emission reduction by addressing key aspects such as contaminants filtration efficiency, loading capacity, pressure drop, temperature performance and longevity.

Design/methodology/approach

The research methodology involves the utilization of textile fabrics, particularly oil-wetted spun-bonded PP non-woven filters, renowned for their effective particle collection capability from intake air. Experiments were conducted using a Box–Behnken design with three variables – oil concentration, areal density and dust quantity – each at three different levels to establish correlations with the filter’s dust holding capacity (DHC) and pressure drop.

Findings

The findings indicate that immersing particles in oil-coated medium significantly enhances the filter’s DHC. Notably, castor oil as a coating demonstrates remarkable results, with a 97.53% increase in DHC and a high particulate matter filtration efficiency of 94.12%.

Originality/value

This study contributes to the originality of research by emphasizing the importance of oil density in determining the filter’s DHC and filtration efficiency. Furthermore, it highlights the superiority of castor oil over coconut oil-coated filter media, advancing air intake and/or filter systems for automotive engines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
51
审稿时长
10 months
期刊介绍: Addresses all aspects of the science and technology of clothing-objective measurement techniques, control of fibre and fabric, CAD systems, product testing, sewing, weaving and knitting, inspection systems, drape and finishing, etc. Academic and industrial research findings are published after a stringent review has taken place.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信