概率和不确定性推理的模态语义

Pub Date : 2024-08-20 DOI:10.1093/jigpal/jzae089
Nino Guallart
{"title":"概率和不确定性推理的模态语义","authors":"Nino Guallart","doi":"10.1093/jigpal/jzae089","DOIUrl":null,"url":null,"abstract":"This paper belongs to the field of probabilistic modal logic, focusing on a comparative analysis of two distinct semantics: one rooted in Kripke semantics and the other in neighbourhood semantics. The primary distinction lies in the following: The latter allows us to adequately express belief functions (lower probabilities) over propositions, whereas the former does not. Thus, neighbourhood semantics is more expressive. The main part of the work is a section in which we study the modal equivalence between probabilistic Kripke models and a subclass of belief neighbourhood models, namely additive ones. We study how to obtain modally equivalent structures.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal semantics for reasoning with probability and uncertainty\",\"authors\":\"Nino Guallart\",\"doi\":\"10.1093/jigpal/jzae089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper belongs to the field of probabilistic modal logic, focusing on a comparative analysis of two distinct semantics: one rooted in Kripke semantics and the other in neighbourhood semantics. The primary distinction lies in the following: The latter allows us to adequately express belief functions (lower probabilities) over propositions, whereas the former does not. Thus, neighbourhood semantics is more expressive. The main part of the work is a section in which we study the modal equivalence between probabilistic Kripke models and a subclass of belief neighbourhood models, namely additive ones. We study how to obtain modally equivalent structures.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文属于概率模态逻辑领域,侧重于对两种不同语义的比较分析:一种植根于克里普克语义,另一种植根于邻域语义。主要区别在于以下几点:后者允许我们充分表达命题的信念函数(低概率),而前者则不行。因此,邻域语义更具表现力。工作的主要部分是研究概率克里普克模型与信念邻域模型的一个子类,即加法模型之间的模态等价性。我们研究如何获得模态等价结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Modal semantics for reasoning with probability and uncertainty
This paper belongs to the field of probabilistic modal logic, focusing on a comparative analysis of two distinct semantics: one rooted in Kripke semantics and the other in neighbourhood semantics. The primary distinction lies in the following: The latter allows us to adequately express belief functions (lower probabilities) over propositions, whereas the former does not. Thus, neighbourhood semantics is more expressive. The main part of the work is a section in which we study the modal equivalence between probabilistic Kripke models and a subclass of belief neighbourhood models, namely additive ones. We study how to obtain modally equivalent structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信